access icon free General mathematical model for the calculation of economic cross sections of cables for wind farms collector systems

A model for calculation of the economic cross sections of cables within the internal network of a wind farm is presented. The economic cross sections of the internal wind farm cables provide maximisation of the profit generated by the wind farm within its life-span through an optimisation of the balance between the investment and operating costs. This study presents a practical mathematical model for determining the optimal cable cross section based on: the wind statistics at the wind turbine location, wind turbine power curve, price of the electric energy, price of the cable, and interest rate. By using the developed model in the planning phase of a wind farm project each of the connection feeders within the internal cable network can be optimised. The proposed model is demonstrated by the example of a perspective wind farm with a rated power of 25 MW located in the region of Banat, Serbia. The calculations done for the observed wind farm show that the optimisation of the interconnecting cable cross sections makes profit increase of nearly 1 million Euro, compared to the model for the calculation of cable cross sections based only on technical limitations.

Inspec keywords: power generation planning; optimisation; profitability; wind power plants; wind turbines; statistical analysis; power cables; mathematical analysis; power generation economics; power system interconnection

Other keywords: power 25 MW; economic cross section; wind farm collector system; wind statistics; general mathematical model; Banat; internal wind farm cable; power system planning; wind turbine power curve; investment; Serbia; cable interconnection; optimisation; wind turbine location; profit maximisation

Subjects: Optimisation techniques; Power cables; Other topics in statistics; Power system planning and layout; Mathematical analysis; Power system management, operation and economics; Wind power plants

References

    1. 1)
      • 23. Ummels, B.C., Pelgrum, E., Gibescu, M., et al: ‘Comparison of integration solutions for wind power in the Netherlands’, IET Renew. Power Gener., 2009, 3, (3), pp. 279292.
    2. 2)
      • 28. Chang, T.P.: ‘Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application’, Appl. Energy, 2011, 88, (1), pp. 272282.
    3. 3)
      • 3. Herbert-Acero, J., Probst, O., Réthoré, P.E., et al: ‘A review of methodological approaches for the design and optimization of wind farms’, Energies, 2014, 7, pp. 69307016.
    4. 4)
      • 8. Klein, A., Haugland, D., Bauer, J., et al: ‘An integer programming model for branching cable layouts in offshore wind farms’, Adv. Intell. Syst. Comput., 2015, 359, pp. 2736.
    5. 5)
      • 29. Masseran, N.: ‘Evaluating wind power density models and their statistical properties’, Energy, 2015, 84, (1), pp. 533541.
    6. 6)
      • 16. IEC 60949: ‘Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects’, 1988.
    7. 7)
      • 14. Wedzik, A., Siewierski, T., Szypowski, M.: ‘A new method for simultaneous optimizing of wind farm's network layout and cable cross-sections by MILP optimization’, Appl. Energy, 2016, 182, pp. 525538.
    8. 8)
      • 13. Pemberton, A.M., Daly, T.D., Ertugrul, N.: ‘On-shore wind farm cable network optimization utilizing a multi-objective genetic algorithm’, Wind Eng., 2013, 7, (6), pp. 659673.
    9. 9)
      • 10. Hou, P., Hu, W., Chen, Z., et al: ‘Optimization of offshore wind farm cable connection layout considering levelised production cost using dynamic minimum spanning tree algorithm’, IET Renew. Power Gener., 2016, 10, (2), pp. 175183.
    10. 10)
      • 27. Rocha, P.A.C., Coelho de Sousa, R., Freitas de Andrade, C., et al: ‘Concepts comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil’, Appl. Energy, 2012, 89, (1), pp. 395400.
    11. 11)
      • 2. Dobrić, G., Đurišić, Ž.: ‘Double-stage genetic algorithm for wind farm layout optimization on complex terrains’, J. Renew. Sustain. Energy, 2014, 6, (3), pp. 112.
    12. 12)
      • 6. Zhao, M., Chen, Z., Blaabjerg, F.: ‘Optimisation of electrical system for offshore wind farms via genetic algorithm’, IET Renew. Power Gener., 2009, 3, (2), pp. 205216.
    13. 13)
      • 11. Hou, P., Hu, W., Chen, Z: ‘Offshore wind farm cable connection configuration optimization using dynamic minimum spanning tree algorithm’. Proc. Int. Power Engineering Conf. (UPEC), Stoke-on-Trent, United Kingdom, September 2015, pp. 16.
    14. 14)
      • 22. Chen, C.-L.: ‘Key issues of wind capacity integration in congested areas of the Taiwan power system’, IET Renew. Power Gener., 2014, 8, (1), pp. 1021.
    15. 15)
      • 7. Neagu, B., Georgescu, G.: ‘Wind farm cable route optimization using a simple approach’. Proc. 2014 Int. Conf. Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, December 2014, pp. 10041009.
    16. 16)
      • 4. Al-Shammari, E.T., Shamshirband, S., Petkovic, D., et al: ‘Comparative study of clustering methods for wake effect analysis in wind farm’, Energy, 2016, 95, pp. 573579.
    17. 17)
      • 1. Taherkhani, M., Hosseini, S.H.: ‘Wind farm optimal connection to transmission systems considering network reinforcement using cost-reliability analysis’, IET Renew. Power Gener., 2013, 7, (6), pp. 603613.
    18. 18)
      • 12. Hou, P., Hu, W., Chen, Z.: ‘Optimal selection of AC cables for large scale offshore wind farms’. Industrial Electronics Society, IECON 2014 – 40th Annual Conf. IEEE, Dallas, USA, October 2014, pp. 22062212.
    19. 19)
      • 15. IEC 60287-2-1: ‘Electric cables – calculation of the current rating – part 2-1: calculation of the thermal resistance’, 2015.
    20. 20)
      • 21. Di Fazio, A.R., Russo, M.: ‘Wind farm modelling for reliability assessment’, IET Renew. Power Gener., 2008, 2, (4), pp. 239248.
    21. 21)
      • 18. Banuelos-Ruedas, F., Angeles-Camacho, C., Rios-Marcuello, S.: ‘Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights’, Renew. Sustain. Energy Rev., 2010, 14, (8), pp. 23832391.
    22. 22)
      • 17. Đurišić, Ž., Mikulović, J.: ‘Assessment of the wind energy resource in the south Banat region, Serbia’, Renew. Sustain. Energy Rev., 2012, 16, (5), pp. 30143023.
    23. 23)
      • 5. Quinonez-Varela, G., Ault, G.W., Anaya-Lara, O., et al: ‘Electrical collector system options for large offshore wind farms’, IET Renew. Power Gener., 2007, 1, (2), pp. 107114.
    24. 24)
      • 24. Siemes, P., Haubrich, H.-J., Vennegeerts, H., et al: ‘Concepts for the improved integration of wind power into the German interconnected system’, IET Renew. Power Gener., 2008, 2, (1), pp. 2633.
    25. 25)
      • 9. Hou, P., Hu, W., Chen, Z: ‘Optimization for offshore wind farm cable connection layout using adaptive particle swarm optimization minimum spanning tree method’, IET Renew. Power Gener., 2016, 10, (5), pp. 694702.
    26. 26)
      • 20. ‘Epexspot, market data, day-ahead auction’. Available at https://www.epexspot.com/en/market-data/dayahead auction.
    27. 27)
      • 19. Zeineldin, H., El-Fouly, T., El-Saadany, E., et al: ‘Impact of wind farm integration on electricity market prices’, IET Renew. Power Gener., 2009, 3, (1), pp. 8495.
    28. 28)
      • 25. Chang, T.P.: ‘Estimation of wind energy potential using different probability density functions’, Appl. Energy, 2011, 88, (5), pp. 18481856.
    29. 29)
      • 26. Yusuf, A.K.: ‘Determination of the best Weibull methods for wind power assessment in the southern region of Turkey’, IET Renew. Power Gener., 2017, 11, (1), pp. 175182.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0420
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0420
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading