Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synchronous islanded operation of an inverter interfaced renewable rich microgrid using synchrophasors

This study describes a novel strategy for microgrid operation and control, which enables a seamless transition from grid connected mode to islanded mode, and restoration of utility supply, without loss or disruption to loads sensitive to frequency or phase angle dynamics. A simulation study is conducted on a microgrid featuring inverter connected renewable generation, and power electronic interfaced loads. Therefore, the microgrid inherently has low inertia, which would subsequently affect the dynamic characteristics of the microgrid, in particular during mode transition. The microgrid is controlled by means of synchrophasor data to achieve synchronous island operation, enabling the microgrid to track the utility frequency and phase angle. The simulation includes synchrophasor acquisition and telecoms delays, allowing for detailed investigation of the microgrid dynamics under various mode transition scenarios, including the risk of commutation failure of the inverter sources. The proposed method is demonstrated to successfully maintain a microgrid in synchronism with the main utility grid after the transition to islanded mode without significant impact on various equipment connected to the microgrid. Thus, synchronous island operation of low inertia microgrids is feasible. This study also showed that utility supply could be seamlessly restored if the microgrid is operated as a synchronous island.

References

    1. 1)
      • 1. ‘Summary Report: 2012 DOE Microgrid Workshop’. Available at http://energy.gov/sites/prod/files/2012%20Microgrid%20Workshop%20Report%2009102012.pdf, accessed 2017.
    2. 2)
      • 12. Best, R.J., Morrow, D.J., Laverty, D.M., et al: ‘Techniques for multiple-set synchronous islanding control’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 6067, DOI: 10.1109/TSG.2010.2100833.
    3. 3)
      • 2. Tan, Y., Meegahapola, L., Muttaqi, K.: ‘A review of technical challenges in planning and operation of remote area power supply systems’, Renew. Sustain. Energy Rev., 2014, 38, pp. 876889, DOI: 10.1016/j.rser.2014.07.034.
    4. 4)
      • 16. Riepnieks, A., Kirkham, H.: ‘An introduction to goodness of Fit for PMU parameter estimation’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 22382245, DOI: 10.1109/TPWRD.2016.2616761.
    5. 5)
      • 6. IEEE Std 1547.4-2011: ‘IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems’, 2011, DOI: 10.1109/IEEESTD.2011.5960751.
    6. 6)
      • 13. Jacobsen, M.R., Laverty, D., Best, R.J.: ‘A laboratory experiment of single machine synchronous islanding using PMUs and raspberry Pi – a platform for multi-machine islanding’. Proc. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 14, DOI: 10.1109/PESGM.2016.7741761.
    7. 7)
      • 15. Laverty, D.M., Kang, L.I., Morrow, D.J.: ‘Secure data networks for electrical distribution applications’, J. Mod. Power Syst. Clean Energy, 2015, 3, (3), pp. 447455, DOI: 10.1007/s40565-015-0121-3.
    8. 8)
      • 17. Meegahapola, L., Robinson, D.: ‘Chapter 7: Dynamic modelling, simulation and control of a commercial building microgrid’, in Jayaweera, D. (Ed.): ‘Smart power systems and renewable energy systems integration’ (Springer International Publishing, Cham, Switzerland, 2016), pp. 119140, DOI: 10.1007/978-3-319-30427-4_7.
    9. 9)
      • 18. ‘REC Peak energy series’. Available at http://www.recgroup.com, accessed April 2017.
    10. 10)
      • 7. Best, R.J., Morrow, D.J., Laverty, D.M., et al: ‘Synchrophasor broadcast over internet protocol for distributed generator synchronization’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 28352841, DOI: 10.1109/TPWRD.2010.2044666.
    11. 11)
      • 14. Zhao, X., Laverty, D.M., McKernan, A., et al: ‘GPS disciplined analogue to digital converter for phasor measurement applications’, IEEE Trans. Instrum. Meas., 2017, 66, (9), pp. 23492357, DOI: 10.1109/TIM.2017.2700158.
    12. 12)
      • 20. Feng, G., Ding, L., Loh, P.C., et al: ‘Indirect dc-link voltage control of two-stage single-phase PV inverter’. IEEE Energy Conversion Congress and Exposition (ECCE 2009), September 2009, DOI: 10.1109/ECCE.2009.5316399.
    13. 13)
      • 22. Task Force on Turbine-Governor Modeling: ‘Dynamic Models for Turbine-Governors in Power System Studies’ (IEEE Power & Energy Society Technical Report, PES-TR1, January 2013).
    14. 14)
      • 23. IEEE Std 421.1-2007: ‘IEEE standard definitions for excitation systems for synchronous machine’, 2007, DOI: 10.1109/IEEESTD.2007.385319.
    15. 15)
      • 9. Bloemink, J.M., Iravani, M.R.: ‘Control of a multiple source microgrid with built-in islanding detection and current limiting’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 21222132, DOI: 10.1109/TPWRD.2012.2198497.
    16. 16)
      • 4. Laverty, D.M., Best, R.J., Morrow, D.J.: ‘Loss-of-mains protection system by application of phasor measurement unit technology with experimentally assessed threshold settings’, IET Gener. Transm. Distrib., 2015, 9, (2), pp. 146153, DOI: 10.1049/iet-gtd.2014.0106.
    17. 17)
      • 19. Hussein, K.H., Mota, I.: ‘Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions’, IEE Proc. Gener. Transm. Distrib., 1995, 142, (1), pp. 5964, DOI: 10.1049/ip-gtd:19951577.
    18. 18)
      • 5. ‘Engineering Recommendation G59/3 - Recommendations for the Connection of Generating Plant to the Distribution Systems of Licensed Distribution Network Operators’, ENA, September 2013.
    19. 19)
      • 11. Wang, J., Chang, N.C.P., Feng, X., et al: ‘Design of a generalised control algorithm for parallel inverters for smooth microgrid transition operation’, IEEE Trans. Ind. Electr., 2015, 62, (8), pp. 49004914, DOI: 10.1109/TIE.2015.2404317.
    20. 20)
      • 3. Meegahapola, L., Robinson, D., Agalgaonkar, A., et al: ‘Microgrids of commercial buildings: strategies to manage mode transfer from grid-connected to islanded mode’, IEEE Trans. Sust. Energy, 2014, 5, (4), pp. 13371347, DOI: 10.1109/TSTE.2014.2305657.
    21. 21)
      • 21. ‘Smart Battery: 12V 50 AH Lithium Ion Battery Data Sheet’. Available at http://www.lithiumion-batteries.com, accessed April 2017.
    22. 22)
      • 10. Mohamed, Y.A.R.I., Radwan, A.A.: ‘Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 352362, DOI: 10.1109/TSG.2011.2136362.
    23. 23)
      • 8. Vandoorn, T.L., Meersman, B., De Kooning, J.D.M., et al: ‘Transition from islanded to grid-connected mode of microgrids with voltage-based droop control’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 25452553, DOI: 10.1109/TPWRS.2012.2226481.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0406
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0406
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address