access icon free Heuristic optimisation for automated distribution system planning in network integration studies

Network integration studies try to assess the impact of future developments, such as the increase of Renewable Energy Sources or the introduction of Smart Grid Technologies, on large-scale network areas. Goals can be to support strategic alignment in the regulatory framework or to adapt the network planning principles of Distribution System Operators. This study outlines an approach for the automated distribution system planning that can calculate network reconfiguration, reinforcement and extension plans in a fully automated fashion. This allows the estimation of the expected cost in massive probabilistic simulations of large numbers of real networks and constitutes a core component of a framework for large-scale network integration studies. Exemplary case study results are presented that were performed in cooperation with different major distribution system operators. The case studies cover the estimation of expected network reinforcement costs, technical and economical assessment of smart grid technologies and structural network optimisation.

Inspec keywords: power distribution planning; smart power grids; optimisation

Other keywords: massive probabilistic simulations; automated distribution system planning; structural network optimisation; smart grid technologies; heuristic optimisation; distribution system operator network planning principles; extension plans; large-scale network areas; network reconfiguration; network integration studies

Subjects: Optimisation techniques; Distribution networks; Power system planning and layout

References

    1. 1)
      • 31. Domingo, C.M., Sanchez-Miralles, A., Roman, T.G.S., et al: ‘A reference network model for large-scale distribution planning with automatic street map generation’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 190197.
    2. 2)
      • 16. Miranda, V., Ranito, J.V., Proenca, L.M.: ‘Genetic algorithms in optimal multistage distribution network planning’, IEEE Trans. Power Syst., 1994, 9, (4), pp. 19271933.
    3. 3)
      • 9. Thurner, L., Scheidler, A., Probst, A., et al: ‘Heuristic optimization for network restoration and expansion in compliance with the single contingency policy’, IET Gener. Transm. Distrib., 2017, 11, (17), pp. 42644273.
    4. 4)
      • 1. Deutsche Energie-Agentur GmbH (dena): ‘Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030’, 2012.
    5. 5)
      • 3. Witzmann, R., Altschäffl, S., Esslinger, P., et al: ‘Verteilnetzstudie Bayern 2013 (Zwischenbericht)’, August 2013.
    6. 6)
      • 10. Georgilakis, P.S., Hatziargyriou, N.D.: ‘A review of power distribution planning in the modern power systems era: models, methods and future research’, Electr. Power Syst. Res., 2015, 121, pp. 89100. Available at: http://www.sciencedirect.com/science/article/pii/S0378779614004490.
    7. 7)
      • 26. Keko, H., Skok, M., Skrlec, D.: ‘Solving the distribution network routing problem with artificial immune systems’. Proc. of the 12th IEEE Mediterranean Electrotechnical Conf. (MELECON), Dubrovnik, Croatia, 2004, vol. 3, pp. 959962.
    8. 8)
      • 18. Camargo, V., Lavorato, M., Romero, R.: ‘Specialized genetic algorithm to solve the electrical distribution system expansion planning’. IEEE Power Energy Society General Meeting, Vancouver, Canada, 2013, pp. 15.
    9. 9)
      • 22. Sahoo, N.C., Ganguly, S., Das, D.: ‘Multi-objective planning of electrical distribution systems incorporating sectionalizing switches and tie-lines using particle swarm optimization’, Swarm Evol. Comput., 2012, 3, pp. 1532.
    10. 10)
      • 14. Ganguly, S., Sahoo, N.C., Das, D.: ‘Recent advances on power distribution system planning: a state-of-the-art survey’, Energy Syst., 2013, 4, (2), pp. 165193. Available at: http://dx.doi.org/10.1007/s12667-012-0073-x.
    11. 11)
      • 19. Fletcher, J., Fernando, T., Iu, H., et al: ‘A case study on optimizing an electrical distribution network using a genetic algorithm’. IEEE 24th Int. Symp. on Industrial Electronics (ISIE), 2015, pp. 2025.
    12. 12)
      • 34. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: ‘Optimization by simulated annealing’, Science, 1983, 220, (4598), pp. 671680.
    13. 13)
      • 23. Ganguly, S., Sahoo, N., Das, D.: ‘A novel multi-objective pso for electrical distribution system planning incorporating distributed generation’, Energy Syst., 2010, 1, (3), pp. 291337.
    14. 14)
      • 11. Jordehi, A.R.: ‘Optimisation of electric distribution systems: a review’, Renew. Sust. Energy Rev., 2015, 51, pp. 10881100. Available at: http://www.sciencedirect.com/science/article/pii/S1364032115006516.
    15. 15)
      • 6. Rehtanz, C., Greve, M., Häger, U.: ‘Verteilnetzstudie für das Land Baden-Württemberg’, April 2017.
    16. 16)
      • 13. Zubo, R.H.A., Mokryani, G., Rajamani, H.S., et al: ‘Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review’, Renew. Sust. Energy Rev., 2017, 72, pp. 11771198. Available at: http://www.sciencedirect.com/science/article/pii/S1364032116306840.
    17. 17)
      • 7. Scheidler, A., Thurner, L., Kraiczy, M., et al: ‘Automated grid planning for distribution grids with increasing pv penetration’. 6th Int. Workshop on Integration of Solar Power into Power Systems, Vienna, Austria, 2016.
    18. 18)
      • 28. Zmijarević, Z., Skok, M., Keko, H., et al: ‘A comprehensive methodology for long-term planning of distribution networks with intrinsic contingency support’. 18th Int. Conf. and Exhibition on Electricity Distribution, CIRED, Turin, Italy, 2005, pp. 15.
    19. 19)
      • 25. Navarro, A., Rudnick, H.: ‘Large-scale distribution planning - Part ii: macrooptimization with Voronoi's diagram and tabu search’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 752758.
    20. 20)
      • 24. Cossi, A.M., Silva, L.G.W.D., Lazaro, R.A.R., et al: ‘Primary power distribution systems planning taking into account reliability, operation and expansion costs’, IET Gener. Transm. Distrib., 2012, 6, (3), pp. 274284.
    21. 21)
      • 29. Cossi, A.M., Romero, R., Mantovani, J.R.S.: ‘Planning of secondary distribution circuits through evolutionary algorithms’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 205213.
    22. 22)
      • 32. Lourenço, H.R., Martin, O.C., Stützle, T.: ‘Iterated Local Search’, In Glover, F., Kochenberger, G.A., (Eds): ‘Handbook of metaheuristics’ (Springer US, Boston, USA, 2003), pp. 320353, Available at: http://dx.doi.org/10.1007/0-306-48056-5_11.
    23. 23)
      • 2. Bundesministerium für Wirtschaft und Energie (BMWi): ‘Moderne Verteilernetze für Deutschland (Verteilernetzstudie)’, September 2014.
    24. 24)
      • 8. Thurner, L., Scheidler, A., Schäfer, F., et al: ‘pandapower – an Open Source Python Tool for Convenient Modeling, Analysis and Optimization of Electric Power Systems’. 2017, Available at: https://arxiv.org/abs/1709.06743.
    25. 25)
      • 5. Rehtanz, C., Moser, A., Kays, J.: ‘Leistungsfähigkeit und Ausbaubedarf der Verteilnetze in Nordrhein-Westfalen (Gutachten)’, August 2014.
    26. 26)
      • 33. Burke, E.K., Bykov, Y.: ‘The Late Acceptance Hill-Climbing heuristic’, Eur. J. Oper. Res., 2017, 258, (1), pp. 7078, Available at: http://www.sciencedirect.com/science/article/pii/S0377221716305495.
    27. 27)
      • 12. Sedghi, M., Ahmadian, A., Aliakbar-Golkar, M.: ‘Assessment of optimization algorithms capability in distribution network planning: review, comparison and modification techniques’, Renew. Sust. Energy Rev., 2016, 66, pp. 415434. Available at: http://www.sciencedirect.com/science/article/pii/S1364032116304592.
    28. 28)
      • 21. Kong, T., Cheng, H., Hu, Z., et al: ‘Multiobjective planning of open-loop mv distribution networks using ComGIS network analysis and MOGA’, Electr. Power Syst. Res., 2009, 79, (2), pp. 390398. Available at: http://www.sciencedirect.com/science/article/pii/S0378779608002204.
    29. 29)
      • 20. Falaghi, H., Singh, C., Haghifam, M.R., et al: ‘Dg integrated multistage distribution system expansion planning’, Int. J. Electr. Power Energy Syst., 2011, 33, (8), pp. 14891497.
    30. 30)
      • 17. Chen, T.H., Cherng, J.T.: ‘Optimal phase arrangement of distribution transformers connected to a primary feeder for system unbalance improvement and loss reduction using a genetic algorithm’, IEEE Trans. Power Syst., 2000, 15, (3), pp. 9941000.
    31. 31)
      • 4. Ackermann, T., Martensen, N., Brown, T., et al: ‘Verteilnetzstudie Rheinland-Pfalz’, January 2014.
    32. 32)
      • 30. Gitizadeh, M., Vahed, A.A., Aghaei, J.: ‘Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms’, Appl. Energy, 2013, 101, (Supplement C), pp. 655666, sustainable Development of Energy, Water and Environment Systems. Available at: http://www.sciencedirect.com/science/article/pii/S0306261912005223.
    33. 33)
      • 15. Franco, J.F., Rider, M.J., Romero, R.: ‘A mixed-integer quadratically-constrained programming model for the distribution system expansion planning’, Int. J. Electr. Power Energy Syst., 2014, 62, pp. 265272. Available at: http://www.sciencedirect.com/science/article/pii/S0142061514002439.
    34. 34)
      • 27. Lin, C.H., Chen, C.S., Huang, M.Y., et al: ‘Optimal phase arrangement of distribution feeders using immune algorithm’. Int. Conf. Intelligent Systems Applications to Power Systems, 2007, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0394
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0394
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading