http://iet.metastore.ingenta.com
1887

Optimisation of grid connected hybrid photovoltaic–wind–battery system using model predictive control design

Optimisation of grid connected hybrid photovoltaic–wind–battery system using model predictive control design

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study explores optimisation of the hybrid power system in the smart grid framework, in conjunction with the model predictive control (MPC) design. This study also creates a strategy that can maximise the use of renewable energy, e.g. photovoltaic, the wind turbine with battery storage and minimise the utilisation of the utility grid for electricity usage in the industry. This is devised by modelling a discrete state-space model of the hybrid power system for a given industry application. The system design is implemented within a real-time electricity pricing environment that is integrated with renewable energy to optimally meet the demand according to a specific performance of the consumer. The emphasis of this approach is on its capacity to supply optimal power to the demand side by selecting the appropriate source; and its robustness against uncertainties. The results show that MPC design for hybrid power system not only optimises the energy flow but also improves the overall process of energy management. It was also observed that the optimal solution minimises the delay cost of energy demand from the utility grid according to a given reference from the consumer for the specified tuning parameter values of the performance index.

References

    1. 1)
      • A.F. Zobaa , R.C. Bansal . (2011)
        1. Zobaa, A.F., Bansal, R.C.: ‘Handbook of renewable energy technology’ (World Scientific, Singapore, 2011).
        .
    2. 2)
      • S. Negi , L. Mathew .
        2. Negi, S., Mathew, L.: ‘Hybrid renewable energy system: a review’, Int. J. Electron. Electr. Eng., 2014, 7, (5), pp. 535542.
        . Int. J. Electron. Electr. Eng. , 5 , 535 - 542
    3. 3)
      • A. Askarzadeh .
        3. Askarzadeh, A.: ‘Electrical power generation by an optimised autonomous PV/wind/tidal/battery system’, IET Renew. Power Gener., 2016, 11, (1), pp. 152164.
        . IET Renew. Power Gener. , 1 , 152 - 164
    4. 4)
      • A. Askarzadeh .
        4. Askarzadeh, A.: ‘Distribution generation by photovoltaic and diesel generator systems: energy management and size optimization by a new approach for a stand-alone application’, Energy, 2017, 122, pp. 542551.
        . Energy , 542 - 551
    5. 5)
      • A. Pachor , P. Suhane .
        5. Pachor, A., Suhane, P.: ‘Modeling and simulation of photovoltaic/wind/diesel/battery hybrid power generation system’, Int. J. Electr. Electron. Comput. Eng., 2014, 3, (1), pp. 122125.
        . Int. J. Electr. Electron. Comput. Eng. , 1 , 122 - 125
    6. 6)
      • B. Ursun , C. Gokcol , I. Umut .
        6. Ursun, B., Gokcol, C., Umut, I., et al: ‘Techno-economic evaluation of a hybrid PV-wind power generation system’, Int. J. Green Energy, 2013, 10, (2), pp. 117136.
        . Int. J. Green Energy , 2 , 117 - 136
    7. 7)
      • D. Suchitra , R. Jegatheesan , T. Deepika .
        7. Suchitra, D., Jegatheesan, R., Deepika, T.: ‘Optimal design of hybrid power generation system and its integration in the distribution network’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 136149.
        . Int. J. Electr. Power Energy Syst. , 136 - 149
    8. 8)
      • A. Maleki , M. Khajeh , Ameri M. Morteza .
        8. Maleki, A., Khajeh, M., Morteza, Ameri M.: ‘Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty’, Int. J. Electr. Power Energy Syst., 2014, 3, (1), pp. 122125.
        . Int. J. Electr. Power Energy Syst. , 1 , 122 - 125
    9. 9)
      • A.M. Abeer , H. Shawky , N.F. Maged .
        9. Abeer, A.M., Shawky, H., Maged, N.F., et al: ‘Modeling and simulation for hybrid of PV-wind system’, Int. J. Eng. Res., 2015, 4, (4), pp. 178183.
        . Int. J. Eng. Res. , 4 , 178 - 183
    10. 10)
      • Y. Zhan , B. Liu , T. Zhang .
        10. Zhan, Y., Liu, B., Zhang, T., et al: ‘An intelligent control strategy of battery energy storage system for microgrid energy management under forecast uncertainties’, Int. J. Electricotechem. Sci., 2014, 9, pp. 41904204.
        . Int. J. Electricotechem. Sci. , 4190 - 4204
    11. 11)
      • N.T. Mbungu , R. Naidoo , R.C. Bansal .
        11. Mbungu, N.T., Naidoo, R., Bansal, R.C., et al: ‘Smart SISO-MPC based energy management system for commercial buildings: technology trends’. IEEE Future Technologies Conf. (FTC), San Francisco, USA, 6–7 December 2016, pp. 750753.
        . IEEE Future Technologies Conf. (FTC) , 750 - 753
    12. 12)
      • N.T. Mbungu , R.M. Naidoo , R.C. Bansal .
        12. Mbungu, N.T., Naidoo, R.M., Bansal, R.C.: ‘Real-time electricity pricing: TOU-MPC based energy management for commercial buildings’. 8th Int. Conf. Applied Energy, Beijing, China, May 2017, vol. 105, pp. 34193424.
        . 8th Int. Conf. Applied Energy , 3419 - 3424
    13. 13)
      • A. Roscoe , G. Ault .
        13. Roscoe, A., Ault, G.: ‘Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response’, IET Renew. Power Gener., 2010, 4, (4), pp. 369382.
        . IET Renew. Power Gener. , 4 , 369 - 382
    14. 14)
      • Y. Zhang , R. Wang , T. Zhang .
        14. Zhang, Y., Wang, R., Zhang, T., et al: ‘Model predictive control-based operation management for a residential microgrid with considering forecast uncertainties and demand response strategies’, IET. Gener. Transm. Distrib., 2016, 10, (10), pp. 23672378.
        . IET. Gener. Transm. Distrib. , 10 , 2367 - 2378
    15. 15)
      • H. Abdeltawab , Y. Mohamed .
        15. Abdeltawab, H., Mohamed, Y.: ‘Market-oriented energy management of a hybrid wind-battery energy storage system via model predictive control with constraint optimizer’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 66586670.
        . IEEE Trans. Ind. Electron. , 11 , 6658 - 6670
    16. 16)
      • M. Trifkovic , M. Sheikhzadeh , K. Nigim .
        16. Trifkovic, M., Sheikhzadeh, M., Nigim, K., et al: ‘Modeling and control of a renewable hybrid energy system with hydrogen storage’, IEEE Trans. Control Syst. Technol., 2014, 22, (1), pp. 169179.
        . IEEE Trans. Control Syst. Technol. , 1 , 169 - 179
    17. 17)
      • F., Garcia-Torres , C. Bordons .
        17. Garcia-Torres, F.,, Bordons, C.: ‘Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 51955207.
        . IEEE Trans. Ind. Electron. , 8 , 5195 - 5207
    18. 18)
      • P. Jonglak , N. Issarachai .
        18. Jonglak, P., Issarachai, N.: ‘PHEVs bidirectional charging/discharging and SoC control for microgrid frequency stabilization using multiple MPC’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 526533.
        . IEEE Trans. Smart Grid , 2 , 526 - 533
    19. 19)
      • M. Taha , A. Yasser .
        19. Taha, M., Yasser, A.: ‘Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42424254.
        . IEEE Trans. Ind. Electron. , 7 , 4242 - 4254
    20. 20)
      • M. Taha , A. Yasser .
        20. Taha, M., Yasser, A.: ‘Robust MPC-based energy management system of a hybrid energy source for remote communities’. IEEE Electrical Power and Energy Conf. (EPEC), 2016, pp. 16.
        . IEEE Electrical Power and Energy Conf. (EPEC) , 1 - 6
    21. 21)
      • T. Henerica , Z. Bing , X. Xiaohua .
        21. Henerica, T., Bing, Z., Xiaohua, X.: ‘Switched model predictive control for energy dispatching of a photovoltaic-diesel-battery hybrid power system’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 12291236.
        . IEEE Trans. Control Syst. Technol. , 3 , 1229 - 1236
    22. 22)
      • M. Siti , R. Tiako , R.C. Bansal .
        22. Siti, M., Tiako, R., Bansal, R.C.: ‘A model predictive control strategy for grid-connected solar-wind with pumped hydro storage’. 5th IET Int. Conf. Renewable Power Generation (RPG), London, UK, 21–23 September 2016.
        . 5th IET Int. Conf. Renewable Power Generation (RPG)
    23. 23)
      • S. Kim , J. Kim , K. Cho .
        23. Kim, S., Kim, J., Cho, K., et al: ‘Optimal operation control of multiple BESSs for a large-scale customer under time-based pricing’, IEEE Trans. Power Syst., 2017, PP, (99), pp. 113.
        . IEEE Trans. Power Syst. , 99 , 1 - 13
    24. 24)
      • P. Kou , D. Liang , L. Gao .
        24. Kou, P., Liang, D., Gao, L.: ‘Distributed EMPC of multiple microgrids for coordinated stochastic energy management’, Appl. Energy, 2017, 185, pp. 939952.
        . Appl. Energy , 939 - 952
    25. 25)
      • A. Khakimova , A. Kusatayeva , A. Shamshimova .
        25. Khakimova, A., Kusatayeva, A., Shamshimova, A., et al: ‘Optimal energy management of a small-size building via hybrid model predictive control’, Energy Build., 2017, 140, pp. 18.
        . Energy Build. , 1 - 8
    26. 26)
      • L. Wang . (2009)
        26. Wang, L.: ‘Model predictive control system design and implementation using MATLAB®’ (Springer Science & Business Media, 2009).
        .
    27. 27)
      • 27. CSIR: Department of Environmental Affairs, Republic of South Africa, 2014, October. Available at https://redzs.csir.co.za/.
        .
    28. 28)
      • 28. Solar Resource Data of NREL, accessed on http://pvwatts.nrel.gov/pvwatts.php.
        .
    29. 29)
      • 29. Eskom: ‘Tariff & charges booklet’, Eskom Demand Side Management, Johannesburg, Brochure 2014/2015, accessed on 20 March 2016.
        .
    30. 30)
      • M. Gilbert . (2013)
        30. Gilbert, M.: ‘Renewable and efficient electric power systems’ (John Wiley & Sons, 2013).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0381
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0381
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address