Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Review of planning methodologies used for determination of optimal generation capacity mix: the cases of high shares of PV and wind

It is an undeniable fact that energy systems all over the world are at the point of a paradigm shift as a need for decarbonisation is eminent and unavoidable. The pressure to decarbonise mounts year after year. Since two thirds of all anthropogenic greenhouse-gas emissions come from the energy sector, decarbonisation is more about reducing emissions in the energy system than any other system in the world. The increased need for decarbonisation has resulted in the increased installation of photovoltaic (PV) and wind systems in countries such as China, India, Germany, Ireland, Denmark, Japan and USA. The increased use of intermittent renewable energy resources introduces a need for advanced methods of planning because traditional planning methods give sub-optimal generation capacity mix when the electric grid is faced with high shares of variable renewable energy resources such as PV and wind. In light of this, this review highlights the major changes in planning methodologies when solving for optimal penetration of generation capacity in systems with high shares of PV and wind. The major highlights are placed on why the methodologies need to evolve as penetration levels of PV and wind increase and further highlight missing issues from the current advanced methods.

References

    1. 1)
      • 61. Kanwar, N., Gupta, N., Niazi, K.R., et al: ‘Optimal distributed resource planning for microgrids under uncertain environment’, IET Renew. Power Gener., 2018, 12, (2), pp. 244251.
    2. 2)
      • 7. International Renewable Energy Agency: ‘The power to change: solar and wind cost reduction potential to 2025’ (Abu Dhabi, United Arab Emirates, 2016). Available at http://www.irena.org/DocumentDownloads/Publications/IRENA_Power_to_Change_2016.pdf, accessed 16 August 2016.
    3. 3)
      • 78. Gallachóir, B.P.Ó., Chiodi, A., Gargiulo, M., et al: ‘Irish TIMES energy systems model’ (Johnstown Castle, Ireland, 2012). Available at https://www.epa.ie/pubs/reports/research/climate/Irish%20TIMES%20Energy%20Systems%20Model.PD, accessed 20 July 2016.
    4. 4)
      • 100. Kazemi, M., Siano, P., Sarno, D., et al: ‘Evaluating the impact of sub-hourly unit commitment method on spinning reserve in presence of intermittent generators’, Energy, 2016, 113, pp. 338354.
    5. 5)
      • 35. Knorr, K., Zimmermann, B., Bofinger, S., et al: ‘Wind and solar PV resource aggregation study for South Africa’ (Council for Scientific and Industrial Research, Pretoria, South Africa, 2016). Available at www.csir.co.za/study-shows-abundance-wind-and-solar-resources-south-africa, accessed 18 January 2017.
    6. 6)
      • 109. Kumar, S.: ‘Assessment of renewables for energy security and carbon mitigation in Southeast Asia: the case of Indonesia and Thailand’, Appl. Energy, 2016, 163, pp. 6370.
    7. 7)
      • 131. Auer, H., Haas, R.: ‘On integrating large shares of variable renewables into the electricity system’, Energy, 2016, 11, (3), pp. 15921601.
    8. 8)
      • 103. Du-Plessis, L.K.: ‘Integrating non-dispatchable renewable energy into the South African grid. An energy balancing view’. MSc thesis, Department of Electrical Engineering. North-West University, North West, South Africa, 2012. Available at https://repository.nwu.ac.za/handle/10394/9648, accessed 10 July 2016.
    9. 9)
      • 133. Sáfiá, F.: ‘Modelling the Hungarian energy system: the first step towards sustainable’, Energy, 2016, 69, pp. 5866.
    10. 10)
      • 139. Østergaard, P.A., Mathiesen, B.V., Möller, B., et al: ‘A renewable energy scenario for Aalborg municipality based on low-temperature geothermal heat, wind power and biomass’, Energy, 2010, 35, (12), pp. 48924901.
    11. 11)
      • 165. Kini, P., Bansal, R.C.: ‘Energy management systems’ (INTECH-Open Access, Croatia, 2011).
    12. 12)
      • 25. Department of Energy-South Africa: ‘Renewable energy independent power producer procurement (REIPPP) programme’ (Department of Energy, Pretoria, 2016). Available at http://www.energy.gov.za/files/events_overviewIPP.html, accessed 22 February 2017.
    13. 13)
      • 110. Shah, R., Mithulananthan, N., Bansal, R.C.: ‘Damping performance analysis of battery energy storage system, ultracapacitor and shunt capacitor with large-scale photovoltaic plants’, Appl. Energy, 2012, 96, pp. 235244.
    14. 14)
      • 83. Institute for Energy Technology: ‘TIMES-Norway model documentation’ (Kjeller, Norway, 2013). Available at https://www.ife.no/en/publications/2013/ensys/times-norway-model-documentation/at_download/Attachmentfile, accessed 20 June 2016.
    15. 15)
      • 32. Poncelet, K., Delarue, E., Duerinck, J., et al: ‘The importance of integrating the variability of renewables in long-term energy planning models’ (Energy Ville, Belgium, 2014). Available at https://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/wp-importance.pdf, accessed 10 January 2017.
    16. 16)
      • 89. Connolly, D., Lund, H., Mathiesen, B.V.: ‘Smart energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European union’, Renew. Sustain. Energy Rev., 2016, 60, pp. 16341653.
    17. 17)
      • 77. Tembo, B.: ‘Policy options for the sustainable development of the power sector in Zambia’ (University of Cape Town, Cape Town, 2012). Available at https://open.uct.ac.za/handle/11427/10678, accessed 20 January 2016.
    18. 18)
      • 19. Fernandez-pita, L.: ‘PV in Brazil: market status, opportunities and challenges’ (ABSOLAR, Santiago, Chile, 2016). Available at http://www.cepal.org/sites/default/files/news/files/1_market_analysis_of_residential_solar_in_chile_luis_fernandez-pita.pdf, accessed 15 May 2017.
    19. 19)
      • 82. International Renewable Energy Agency: ‘Planning for the renewable future: long-term modelling and tools to expand variable renewable power in emerging economies’ (International Renewable Energy Agency, Abu Dhabi, UAE, 2016). Available at https://www.irena.org/.../IRENA_Planning_for_the_Renewable_Future_2017.pdf, accessed 22 January 2017.
    20. 20)
      • 151. Hreinsson, K., Vrakopoulou, M., Andersson, G.: ‘Stochastic security constrained unit commitment and non-spinning reserve allocation with performance guarantees’, Int. J. Electr. Power Energy Syst., 2015, 72, pp. 109115.
    21. 21)
      • 81. Senatla, M., Tazvinga, H., Moholisa, E.: ‘CSIR autonomous campus: financial impact of renewable energy resources in CSIR campus’ (Council for Scientific and Industrial Research, Pretoria, South Africa, 2017).
    22. 22)
      • 60. Hejeejo, R., Qiu, J., Brinsmead, T.S., et al: ‘Sustainable energy system planning for the management of MGs: a case study in New South Wales, Australia’, IET Renew. Power Gener., 2017, 11, (2), pp. 228238.
    23. 23)
      • 8. Morris, C., Pehnt, M.: ‘German's energy transition’ (Heinrich Boll Stiftung, Berlin, Germany, 2016). Available at http://energytransition.de/, accessed 20 January 2017.
    24. 24)
      • 155. Saket, R., Bansal, R.C., Singh, G.: ‘Generation capacity adequacy evaluation based on peak load consideration’, South Pac. J. Nat. Appl. Sci., 2006, 24, (1), pp. 3844.
    25. 25)
      • 79. Energy Research Centre: ‘Towards a new power plan’ (UCT, Cape Town, South Africa, 2013). Available at http://www.erc.uct.ac.za/sites/default/files/image_tool/images/119/Papers-2013/13ERC-Towards_new_power_plan.pdf, accessed 20 May 2016.
    26. 26)
      • 66. Brown, T.: ‘PyPSA documentation’ (Renewable Energy Group, Emden, 2016). Available at https://pypsa.org/doc/index.html, accessed 23 January 2017.
    27. 27)
      • 132. Ćosić, B., Krajačić, G., Duić, N.: ‘A 100% renewable energy system in the year 2050: the case of Macedonia’, Energy, 2012, 48, (1), pp. 8087.
    28. 28)
      • 117. Azim, R., Li, F., Wei, Y., et al: ‘Reactive power planning under high penetration of wind energy using benders decomposition’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18351844.
    29. 29)
      • 119. Neimane, V.: ‘On development planning of electricity distribution networks’. PhD thesis, Royal Institute of Technology, Department of Electrical Engineering: Electric Power systems, 2001. Available at http://www.diva-portal.org/smash/get/diva2:9035/FULLTEXT01.pdfAnd, accessed 4 April 2016.
    30. 30)
      • 56. Müller, S.: ‘Evaluation of power system flexibility adequacy’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 922931.
    31. 31)
      • 101. Batas Bjelić, I., Rajaković, N., Krajačić, G., et al: ‘Two methods for decreasing the flexibility gap in national energy systems’, Energy, 2016, 115, pp. 19.
    32. 32)
      • 127. Milligan, M., Hodge, B., Kirby, B., et al: ‘Integration costs: are they unique to wind and solar energy ?’. American Wind Energy Association Conf. Wind 2012, Atlanta, GA, May 2012.
    33. 33)
      • 43. Huber, M., Dimkova, D., Hamacher, T.: ‘Integration of wind and solar power in Europe: assessment of flexibility requirements’, Energy, 2014, 69, pp. 236246.
    34. 34)
      • 129. Roxas, F., Santiago, A.: ‘Alternative framework for renewable energy planning in the Philippines’, Renew. Sustain. Energy Rev., 2016, 59, pp. 13961404.
    35. 35)
      • 138. Østergaard, P.A., Lund, H.: ‘A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating’, Appl. Energy, 2011, 88, (2), pp. 479487.
    36. 36)
      • 45. Le Santoso, H.T.: ‘Analysis of voltage stability and optimal wind power penetration limits for a non-radial network with an energy storage system’. IEEE Power & Energy Society (PES) General Meeting, Tampa, FL, USA, June 24–June 28 2007, pp. 2428.
    37. 37)
      • 55. Belderbos, A., Delarue, E.: ‘Accounting for flexibility in power system planning with renewables’, Int. J. Electr. Power Energy Syst., 2015, 71, pp. 3341.
    38. 38)
      • 12. Piper, R.J.: ‘How to write a systematic literature review: a guide for medical students’ (University of Edinburgh, Edinburgh, 2013). Available at http://sites.cardiff.ac.uk/curesmed/files/2014/10/NSAMR-Systematic-Review.pdf, accessed 07 February 2018.
    39. 39)
      • 40. Khatib, H., Difiglio, C.: ‘Economics of nuclear and renewables’, Energy Policy, 2016, 96, pp. 740750.
    40. 40)
      • 135. Xiong, W., Wang, Y., Mathiesen, B.V., et al: ‘Heat roadmap China: new heat strategy to reduce energy consumption towards 2030’, Energy, 2015, 81, pp. 274285.
    41. 41)
      • 161. Ahmadigorji, M., Abbaspour, A., Rajab-Chahnavieh, A., et alOptimal DG placement in distribution systems using cost/worth analysis’, Electr. Comput. Eng., 2009, 3, (1), pp. 694701.
    42. 42)
      • 57. Cochran, J., Miller, M., Zinaman, O., et al: ‘Flexibility in 21st century power systems’, Denver West Parkway’ (NREL, Denver, 2014). Available at http://www.nrel.gov/docs/fy14osti/61721.pdf, accessed 20 May 2016.
    43. 43)
      • 113. Chown, G.A.: ‘Economic analysis of relaxing frequency control’. PhD thesis, School of Electrical and Information Engineering. University of Witwatersrand, South Africa, 2007. Available at http://wiredspace.wits.ac.za/bitstream/handle/10539/5326/G%20Chown%20PhD%20Thesis%20final%20.pdf?sequence=1, accessed 1 December 2016.
    44. 44)
      • 122. Medjroubi, W., Philipp, U., Scharf, M., et al: ‘Open data in power grid modelling: new approaches towards transparent grid models’, Energy Rep., 2017, 3, pp. 1421.
    45. 45)
      • 125. Buchner, J., Katzfey, J., Florcken, O., et al: ‘Smart grids in Germany: How much costs do distribution grids cause at planning time?’. Proc., Int. Symp. Smart Electric Distribution Systems and Technologies (EDST 2015), Hahnweide, 2015, pp. 224229.
    46. 46)
      • 158. Gidwani, L., Tiwari, H., Bansal, R.C.: ‘Simulation of wind power impact on the transient fault behaviour of grid-connected wind turbine’, Int. J. Sustain. Energy, 2013, 32, (2), pp. 96110.
    47. 47)
      • 74. Pina, A., Silva, C.A., Ferrão, P.: ‘High-resolution modeling framework for planning electricity systems with high penetration of renewables’, Appl. Energy, 2013, 112, pp. 215223.
    48. 48)
      • 166. Prasad, R., Bansal, R.C.: ‘Wind resource assessment: in an Island Country: Gau Island Fiji case study’ (Lambert Academic Publishing, Germany, 2012).
    49. 49)
      • 142. Segurado, R., Krajačić, G., Duić, N., et al: ‘Increasing the penetration of renewable energy resources in Vicente S., Cape Verde’, Appl. Energy, 2011, 88, (2), pp. 466472.
    50. 50)
      • 65. Connolly, D., Lund, H., Mathiesen, B.V., et al: ‘A review of computer tools for analysing the integration of renewable energy into various energy systems’, Appl. Energy, 2010, 87, (4), pp. 10591082.
    51. 51)
      • 144. Awopone, A.K., Zobaa, A.F.: ‘Analyses of optimum generation scenarios for sustainable power generation in Ghana’, AIMS Energy, 2017, 5, pp. 193208. Available at http://dspace.brunel.ac.uk/handle/2438/14137, accessed 20 May 2017.
    52. 52)
      • 29. Center for Energy Economics: ‘Brazil's power market crisis’ (Centre for Energy Economics, Texas, 2002). Available at http://www.beg.utexas.edu/energyecon/new-era/case_studies/Brazil_Power_Market_Crisis.pdf, accessed 24 May 2017.
    53. 53)
      • 34. Fant, C., Gunturu, B., Schlosser, A.: ‘Characterizing wind power resource reliability in Southern Africa’, Appl. Energy, 2016, 161, pp. 565573.
    54. 54)
      • 67. Jebaraj, S., Iniyan, S.: ‘A review of energy models’, Renew. Sustain. Energy Rev., 2006, 10, (4), pp. 281311.
    55. 55)
      • 154. Azizipanah-Abarghooee, R., Golestaneh, F., Gooi, H.B., et al: ‘Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power’, Appl. Energy, 2016, 182, pp. 634651.
    56. 56)
      • 14. IRENA: ‘International renewable energy agency Southern African power pool: planning and prospects for renewable energy’ (IRENA, Abu Dhabi, 2013). Available at www.irena.org, accessed 06 January 2017.
    57. 57)
      • 18. Siemens: ‘Fact sheet: wind power, United Kingdom’ (Siemens, London, 2014). Available at https://www.siemens.com/press/pool/de/feature/2014/energy/2014-03-hull/fact-sheet-wind-power-uk-e.pdf, accessed 21 January 2017.
    58. 58)
      • 141. Duić, N., da Graça Carvalho, M.: ‘Increasing renewable energy sources in island energy supply: case study Porto Santo’, Renew. Sustain. Energy Rev., 2004, 8, (4), pp. 383399.
    59. 59)
      • 140. Novosel, T., Ćosić, B., Pukšec, T., et al: ‘Integration of renewables and reverse osmosis desalination – case study for the Jordanian energy system with a high share of wind and photovoltaics’, Energy, 2014, 92, (3), pp. 270278.
    60. 60)
      • 156. Zobaa, A.F., Cantelli, M., Bansal, R.C.: ‘Power quality-monitoring, analysis and enhancement’ (INTECH-Open Access Publishers, Croatia, 2011).
    61. 61)
      • 98. Ma, J., Silva, V., Belhomme, R., et al: ‘Evaluating and planning flexibility in sustainable power systems’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 200209.
    62. 62)
      • 33. Hirth, L.: ‘The optimal share of variable renewables: How the variability of wind and solar power affects their welfare-optimal deployment’, Energy, 2015, 36, (1), pp. 149184.
    63. 63)
      • 68. Bansal, R.C.: ‘Optimization methods for electric power systems: an overview’, Int. J. Emerg. Electr. Power Syst., 2005, 2, (2), pp. 123.
    64. 64)
      • 62. Rathnagel, S., Voss, A.: ‘Energy models for planning and policy assessment’, Eur. J. Oper. Res., 1981, 8, (2), pp. 99114.
    65. 65)
      • 53. Eid, C., Codani, P., Perez, Y., et al: ‘Managing electric flexibility from distributed energy resources: a review of incentives for market design’, Renew. Sustain. Energy Rev., 2016, 64, pp. 237247.
    66. 66)
      • 170. Choi, D.G., Thomas, V.M.: ‘An electricity generation planning model incorporating demand response’, Energy Policy, 2012, 42, pp. 429441.
    67. 67)
      • 91. Krajačić, G., Duić, N., Zmijarević, Z., et al: ‘Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction’, Appl. Therm. Eng., 2011, 31, (13), pp. 20732083.
    68. 68)
      • 69. Fripp, M.: ‘Switch: a planning tool for power systems with large shares of intermittent renewable energy’, Environ. Sci. Technol., 2012, 46, (11), pp. 63716378.
    69. 69)
      • 6. Wirth, H.: ‘Recent facts about photovoltaics in Germany’ (Fraunhofer Institute for Solar Energy, Freiburg, 2016). Available at https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/recent-facts-about-photovoltaics-in-germany.pdf, accessed 18 April 2017.
    70. 70)
      • 87. Komiyama, R., Otsuki, T., Fujii, Y.: ‘Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan’, Energy, 2015, 81, pp. 537555.
    71. 71)
      • 94. Rose, A., Stoner, R., Pérez-arriaga, I.: ‘Prospects for grid-connected solar PV in Kenya: a systems approach’, Appl. Energy, 2017, 161, (2016), pp. 583590.
    72. 72)
      • 58. Welsch, M., Deane, P., Howells, M., et al: ‘Incorporating flexibility requirements into long-term energy system models – a case study on high levels of renewable electricity penetration in Ireland’, Appl. Energy, 2014, 135, pp. 600615.
    73. 73)
      • 28. McKinsey: ‘Powering India: road to 2017’, McKinsey Company Mon. J., 2008. Available at www.mckinsey.com/∼/media/.../india/pdfs/powering_india_the_road_to_2017.ashx, accessed March 2017.
    74. 74)
      • 118. Nunes, J.B., Mahmoudi, N., Saha, T.K., et al: ‘A multi-stage transition toward high renewable energy penetration in Queensland, Australia’, IET Gener. Transm. Distrib., 2018, 12, (4), pp. 850858.
    75. 75)
      • 146. Elliston, B., Diesendorf, M., MacGill, I.: ‘Simulations of scenarios with 100% renewable electricity in the Australian national electricity market’, Energy Policy, 2012, 45, pp. 606613.
    76. 76)
      • 115. Drouineau, M., Assoumou, E., Mazauric, V., et alIncreasing shares of intermittent sources in Reunion Island: impacts on the future reliability of power supply’, Renew. Sustain. Energy Rev., 2015, 46, pp. 120128.
    77. 77)
      • 147. Komiyama, R., Fujii, Y.: ‘Assessment of massive integration of photovoltaic system considering rechargeable battery in Japan with high time-resolution optimal power generation mix model’, Energy Policy, 2014, 66, pp. 7389.
    78. 78)
      • 46. Pineda, S., Morales, J.M., Boomsma, T.K.: ‘Impact of forecast errors on expansion planning of power systems with a renewables target’, Eur. J. Oper. Res., 2016, 248, (3), pp. 11131122.
    79. 79)
      • 90. Ueckerdt, F., Pietzcker, R., Scholz, Y., et al: ‘Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model’, Energy Econ., 2015, 10, pp. 665684. Available at https://doi.org/10.1016/j.eneco.2016.05.012.
    80. 80)
      • 2. Department of Environmental Affairs: ‘GHG inventory for Republic of South Africa’ (Pretoria, South Africa, 2014). Available at http://unfccc.int/resource/docs/natc/zafnir1.pdf, accessed December 2016.
    81. 81)
      • 27. Statista: ‘Installed capacity of electric power generation in China in 2016, by source (in GW)’ (2016). Available at https://www.statista.com/statistics/302191/china-power-generation-installed-capacity-by-source/, accessed 24 May 2017.
    82. 82)
      • 23. Federal Ministry for Economic Affairs and Energy: ‘Act on the development of renewable energy sources (renewable energy sources act – RES Act 2014)’ (Federal Ministry for Economic Affairs and Energy, Berlin, Germany, 2014). Available at http://www.bmwi.de/English/Redaktion/Pdf/renewable-energy-sources-act-eeg-2014,property=pdf,bereich=bmwi2012,sprache=en,rwb=true.pdf, accessed 10 October 2016.
    83. 83)
      • 16. European Network of Transmission System Operators for Electricity: ‘Yearly statistics and adequacy retrospect 2014: European electricity system data’ (Brussels, Belgium, 2016). Available at https://www.entsoe.eu/publications/statistics/yearly-statistics-and-adequacy-retrospect/Pages/default.aspx, accessed 20 January 2017.
    84. 84)
      • 20. Ministry of New and Renewable Energy (MNRE): ‘Commissioning status of solar power projects as on 31-01-2017’ (European Network of Transmission System Operators for Electricity, Delhi, 2017). Available at http://mnre.gov.in/file-manager/UserFiles/grid-connected-solar-power-project-installed-capacity.pdf, accessed 15 May 2017.
    85. 85)
      • 114. Poolla, B.K., Bolognani, S., Dorfler, F.: ‘Optimal placement of virtual inertia in power grids’ (Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2015). Available at https://arxiv.org/pdf/1510.01497.pdf, accessed 1 September 2016.
    86. 86)
      • 4. Jairaj, B., Martin, S., Ryor, J., et al: ‘The future of the electric grid’ (World Resources Institute, Washington, USA, 2011). Available at http://www.wri.org/publication/future-electricity-grid, accessed 11 November 2016.
    87. 87)
      • 75. Usher, W., Strachan, N.: ‘UK MARKAL modelling – examining decarbonisation pathways in the 2020s on the way to meeting the 2050 emissions target’, (University of College London, London, UK, 2010). Available at https://www.ucl.ac.uk/energy-models/models/uk-markal/ccc-fourth-carbon-budget-final-report-uk-markal-updates, accessed 20 April 2016.
    88. 88)
      • 72. Weijermars, R., Taylor, P., Bah, O., et al: ‘Review of models and actors in energy mix optimization – can leader visions and decisions align with optimum model strategies for our future energy systems?’, Energy Strateg. Rev., 2012, 1, (1), pp. 518.
    89. 89)
      • 150. Alvarez, G.E., Marcovecchio, M.G., Aguirre, P.A.: ‘Unit commitment scheduling including transmission constraints: a MILP formulation’, Comput.-Aided Chem. Eng., 2016, 38, pp. 21572162.
    90. 90)
      • 5. Sder, L., Hofmann, L., Orths, A., et al: ‘Experience from wind integration in some high penetration areas’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 412.
    91. 91)
      • 85. Marquard, A., Merven, B., Tyler, E.: ‘Costing a 2020 target of 15% renewable electricity for South Africa’ (University of Cape Town, Cape Town, 2008). Available at https://open.uct.ac.za/bitstream/item/.../Marquard_Costing_a_2020_target_15_2008.pdf, accessed 10 December 2016.
    92. 92)
      • 160. Payasi, R.P., Singh, A.K., Singh, D.: ‘Review of distributed generation planning: objectives, constraints, algorithms’, Int. J. Eng. Sci. Technol., 2011, 3, (3), pp. 133153.
    93. 93)
      • 15. Sensfub, F., Ragwitz, M., Genoese, M.: ‘The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany’ (Fraunhofer, Germany, 2007). Available at https://ideas.repec.org/p/zbw/fisisi/s72007.html, accessed 10 July 2016.
    94. 94)
      • 44. Sullivan, P., Eurek, K., Margolis, R.: ‘Advanced methods for incorporating solar energy technologies into electric sector capacity-expansion models: literature review and analysis’ (Denver West Parkway, USA, 2014). Available at http://www.nrel.gov/docs/fy14osti/61185.pdf, accessed 10 May 2016.
    95. 95)
      • 168. Bhattarai, B.P., de Mendaza, I.D.C., Bak-Jensen, B., et al: ‘Local adaptive control of solar photovoltaics and electric water heaters for real-time grid support’, CIGRE, Paris, 2016, pp. 112.
    96. 96)
      • 17. European Wind Energy Association: ‘The European offshore wind industry key 2015 trends and statistics’ (European Wind Energy Association, Brussels, 2015). Available at https://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2015.pdf, accessed 20 January 2017.
    97. 97)
      • 76. Department of Energy: ‘Integrated resource plan for electricity 2010–2030’ (Department of Energy, Pretoria, South Africa, 2011). Available at www.energy.gov.za/IRP/irp%20files/IRP2010_2030_Final_Report_20110325.pdf, accessed 20 February 2015.
    98. 98)
      • 70. Foster, J., Wagner, L., Wild, P., et al: ‘Market and economic modelling of the impacts of distributed generation’ (University of Queensland, Brisbane, Australia, 2011). Available at http://ei.haas.berkeley.edu/research/papers/wp260.pdf, accessed 10 November 2017.
    99. 99)
      • 112. Bansal, R.C.: ‘Automatic reactive-power control of isolated wind diesel hybrid power systems’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 11161126.
    100. 100)
      • 1. Department of Environmental Affairs: ‘Defining South Africa's peak, plateau and decline greenhouse gas emission trajectory’ (Pretoria, South Africa, 2011). Available at https://www.environment.gov.za/sites/default/files/docs/sanational_determinedcontribution.pdf, accessed 20 February 2017.
    101. 101)
      • 130. Després, J., Mima, S., Kitous, A., et al: ‘Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis’, Energy Econ., 2016, 64, pp. 638650.
    102. 102)
      • 128. De Jonghe, C., Delarue, E., Belmans, R., et al: ‘Determining optimal electricity technology mix with high level of wind power penetration’, Appl. Energy, 2011, 88, (6), pp. 22312238.
    103. 103)
      • 59. Manditereza, P.T., Bansal, R.C.: ‘Renewable distributed generation: the hidden challenges – a review from the protection perspective’, Renew. Sustain. Energy Rev., 2016, 58, pp. 14571465.
    104. 104)
      • 96. Merrick, J.H.: ‘On representation of temporal variability in electricity capacity planning models’, Energy Econ., 2016, 59, pp. 261274.
    105. 105)
      • 134. Lund, H., Mathiesen, B.V.: ‘Energy system analysis of 100% renewable energy systems – the case of Denmark in years 2030 and 2050’, Energy, 2009, 34, (5), pp. 524531.
    106. 106)
      • 39. Rubin, E.S., Azevedo, I.M.L., Jaramillo, P., et al: ‘A review of learning rates for electricity supply technologies’, Energy Policy, 2015, 86, pp. 198218.
    107. 107)
      • 84. Energy Research Centre: ‘Assumptions and methodologies in the South African TIMES (SATIM) energy model’ (UCT, Cape Town, South Africa, 2013). Available at http://www.erc.uct.ac.za/sites/default/files/image_tool/images/119/Researchdocs/Satim/SATIM%20Methodology-v2.1.pdf, accessed 20 May 2016.
    108. 108)
      • 42. Zawilska, E., Brooks, M.J.: ‘An assessment of the solar resource for Durban, South Africa’, Renew. Energy, 2011, 36, (12), pp. 34333438.
    109. 109)
      • 137. Lund, H., Duić, N., Krajačić, G., et al: ‘Two energy system analysis models: a comparison of methodologies and results’, Energy, 2007, 32, (6), pp. 948954.
    110. 110)
      • 11. Ueckerdt, F., Hirth, L., Luderer, G., et al: ‘System LCOE: What are the costs of variable renewables?’, Energy, 2013, 63, pp. 6175.
    111. 111)
      • 148. Gils, H.C., Simon, S.: ‘Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands’, Appl. Energy, 2017, 188, pp. 342355.
    112. 112)
      • 41. Giglmayr, S., Brent, A.C., Gauché, P., et al: ‘Utility-scale PV power and energy supply outlook for South Africa in 2015’, Renew. Energy, 2015, 83, pp. 779785.
    113. 113)
      • 97. International Renewable Energy Agency and International Energy Agency: ‘Renewable energy integration in power grids: technology brief’ (International Renewable Energy Agency, Abu Dhabi, 2015). Available at http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP_Tech_Brief_Power_Grid_Integration_2015.pdf, accessed 12 October 2016.
    114. 114)
      • 26. Energy Analysis: ‘The Danish experience with integrating variable renewable energy renewable energy’ (Agora Energiewende, Copenhagen, Denmark, 2015). Available at https://www.agora-energiewende.de/fileadmin/Projekte/2015/integration-variabler-erneuerbarer-energien-daenemark/Agora_082_Deutsch-Daen_Dialog_final_WEB.pdf, accessed 13 August 2016.
    115. 115)
      • 136. Komušanac, I., Ćosić, B., Duić, N.: ‘Impact of high penetration of wind and solar PV generation on the country power system load: the case study of Croatia’, Appl. Energy, 2016, 69, pp. 5866.
    116. 116)
      • 149. Hagos, D.A., Gebremedhin, A., Zethraeus, B.: ‘Towards a flexible energy system – a case study for Inland Norway’, Appl. Energy, 2014, 130, pp. 4150, System code’, Energy, 2012, 46, (1), pp. 337–350.
    117. 117)
      • 164. Zobaa, A., Bansal, R.: ‘Handbook of renewable energy technology’ (World Scientific Publishers, Singapore, 2011).
    118. 118)
      • 167. Palmer, J., Sorda, G., Madlener, R.: ‘Modeling the diffusion of residential photovoltaic systems in Italy: an agent-based simulation’, Technol. Forecast. Soc. Change, 2013, 99, (9), pp. 106131.
    119. 119)
      • 93. Bebic, J.: ‘Power system planning: emerging practices suitable for evaluating the impact of high-penetration photovoltaics’ (National Renewable Energy Laboratory, New York, 2008). Available at http://www.nrel.gov/docs/fy08osti/42297.pdf, accessed 2 July 2016.
    120. 120)
      • 47. Brouwer, A.S., van den Broek, M., Zappa, W., et al: ‘Least-cost options for integrating intermittent renewables in low-carbon power systems’, Appl. Energy, 2016, 161, pp. 4874.
    121. 121)
      • 95. Deetjen, T.A., Garrison, J.B., Rhodes, J.D., et al: ‘Solar PV integration cost variation due to array orientation and geographic location in the Electric Reliability Council of Texas’, Appl. Energy, 2016, 180, pp. 607616.
    122. 122)
      • 22. Global Wind Energy Council: ‘Indian wind energy: a brief outlook 2016’ (Global Wind Energy Council, Brussels, Belgium, 2016). Available at http://www.gwec.net/publications/country-reports/, accessed 18 May 2017.
    123. 123)
      • 31. Hirth, L.: ‘The market value of variable renewables. The effect of solar wind power variability on their relative price’, Energy Econ., 2013, 38, pp. 218236.
    124. 124)
      • 37. Meyer, A.J., van Niekerk, J.L.: ‘Roadmap for the deployment of concentrating solar power in South Africa’. Proc. Solar Power Chemical Energy Systems Conf. (Solar PACES 2011), Stellenbosch, 2011, pp. 918.
    125. 125)
      • 145. Awopone, A.K., Zobaa, A.F., Banuenumah, W.: ‘Techno-economic and environmental analysis of power generation expansion plan of Ghana’, Energy Policy, 2017, 104, (1), pp. 1322.
    126. 126)
      • 92. Huber, M., Weissbart, C.: ‘On the optimal mix of wind and solar generation in the future Chinese power system’, Energy, 2015, 90, pp. 235243.
    127. 127)
      • 10. Hirth, L., Ueckerdt, F., Edenhofer, O.: ‘Integration costs revisited – an economic framework for wind and solar variability’, Renew. Energy, 2015, 74, pp. 925939.
    128. 128)
      • 124. Zheng, Y., Hu, Z., Wang, J., et al: ‘IRSP (integrated resource strategic planning) with interconnected smart grids in integrating renewable energy and implementing DSM (demand side management) in China’, Energy, 2014, 76, pp. 863874.
    129. 129)
      • 88. Krakowski, V., Assoumou, E., Mazauric, V., et al: ‘Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: a prospective analysis’, Appl. Energy, 2016, 171, pp. 501522.
    130. 130)
      • 102. Perez-Arriaga, I.: ‘Managing large scale penetration of intermittent renewables’. An MIT Energy Initiative Symp., MA, USA, 2011, pp. 1011.
    131. 131)
      • 80. Alfstad, T.: ‘Development of a least cost energy supply model for the SADC region’, Master's thesis, University of Cape Town, 2004. Available at https://open.uct.ac.za/bitstream/handle/11427/6769/thesis_ebe_2004_alfstad_t.pdf?sequence=1, accessed 10 December 2016.
    132. 132)
      • 54. Ulbig, A., Andersson, G.: ‘Analyzing operational flexibility of electric power systems’, Int. J. Electr. Power Energy Syst., 2015, 72, pp. 155164.
    133. 133)
      • 52. Volk, D.: ‘Electricity networks: infrastructure and operations: too complex for a resource?’ (Paris, France, 2013). Available at https://www.iea.org/publications/insights/.../ElectricityNetworks2013_FINAL.pdf, accessed 11 January 2017.
    134. 134)
      • 9. Wright, J.G., Bishof-Niemz, T., Calitz, J., et al: ‘Formal comments on the integrated resource plan (IRP) update assumptions, base case and observations 2016’ (Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa, 2017). Available at https://www.csir.co.za/sites/default/files/Documents/20170331CSIR_EC_DOE.pdf, accessed 17 April 2017.
    135. 135)
      • 108. Heinrich, G., Howells, M., Basson, L., et al: ‘Electricity supply industry modelling for multiple objectives under demand growth uncertainty’, Energy, 2007, 32, (11), pp. 22102229.
    136. 136)
      • 105. Shi, J., Chen, W., Yin, X.: ‘Modelling building's decarbonization with application of China TIMES model’, Appl. Energy, 2016, 162, pp. 13031312.
    137. 137)
      • 73. Suganthi, L., Samuel, A.A.: ‘Energy models for demand forecasting – a review’, Renew. Sustain. Energy Rev., 2012, 16, (2), pp. 12231240.
    138. 138)
      • 64. Van Beeck, N.: ‘Classification of energy models’ (Tilburg University and Eindhoven University of Technology, Eindhoven, 1999). Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.8055&rep=rep1&type=pdf, accessed 16 April 2016.
    139. 139)
      • 107. Tazvinga, H., Xia, X., Zhu, B.: ‘Optimal energy management strategy for distributed energy resources’, Energy Proc., 2014, 61, pp. 13311334.
    140. 140)
      • 48. Grilo, A.P., Meira, P.C.M., Vieira, J.C.M., et al: ‘Analytical tools to assess the voltage stability of induction-based distributed generators’, Int. J. Electr. Power Energy Syst., 2012, 36, (1), pp. 3139.
    141. 141)
      • 152. Quan, H., Srinivasan, D., Khosravi, A.: ‘Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: a comparative study’, Energy, 2016, 103, pp. 735745.
    142. 142)
      • 153. Lyon, J.D., Zhang, M., Hedman, K.W.: ‘Capacity response sets for security-constrained unit commitment with wind uncertainty’, Electr. Power Syst. Res., 2016, 136, pp. 2130.
    143. 143)
      • 21. Statista: ‘U.S. Electricity – noncoincident peak load 2013 statistic’ (Statista, New York, 2013). Available at https://www.statista.com/statistics/187322/us-electric-peak-load-since-1990/, accessed 24 May 2017.
    144. 144)
      • 106. Hove, T., Tazvinga, H.: ‘A techno-economic model for optimising component sizing and energy dispatch strategy for PV-diesel-battery hybrid power systems’, J. Energy South Africa, 2012, 23, (4), pp. 1828.
    145. 145)
      • 143. Krajačić, G., Duić, N., da Graça Carvalho, M.: ‘How to achieve a 100% RES electricity supply for Portugal?’, Appl. Energy, 2011, 88, (2), pp. 508517.
    146. 146)
      • 163. Liu, X., Bansal, R.C.: ‘Thermal power plants: modelling, control and efficiency improvement’ (Taylor & Francis, New York, USA, 2016).
    147. 147)
      • 116. Arent, D.: ‘21st century power partnership: accelerating the transformation of power systems’ (NREL, Denver, 2016). Available at http://www.nrel.gov/docs/fy15osti/63366.pdf, accessed 3 November 2016.
    148. 148)
      • 3. Department of Energy-South Africa: ‘2013-Aggregated-balances’ (Department of Energy, South Africa, Pretoria, South Africa, 2013). Available at http://www.energy.gov.za/files/media/Energy_Balances.html, accessed 20 February 2017.
    149. 149)
      • 121. Brouwer, A.S., van den Broek, M., Seebregts, A., et al: ‘Impacts of large-scale intermittent renewable energy sources on electricity systems, and how these can be modeled’, Renew. Sustain. Energy Rev., 2014, 33, pp. 443466.
    150. 150)
      • 123. Jaehnert, S., Wolfgang, O., Farahmand, H., et al: ‘Transmission expansion planning in Northern Europe in 2030 — methodology and analyses’, Energy Policy, 2013, 61, pp. 125139.
    151. 151)
      • 169. Satchwell, A., Hledik, R.: ‘Analytical frameworks to incorporate demand response in long-term resource planning’, Util. Policy, 2014, 28, pp. 7381.
    152. 152)
      • 86. Alberg, P.: ‘Reviewing energy PLAN simulations and performance indicator applications in EnergyPLAN simulations’, Appl. Energy, 2015, 154, pp. 921933.
    153. 153)
      • 120. Covarrubias, A.J.: ‘Expansion planning for electric power systems’, IAEA Bull., 1979, 21, (2), pp. 5564.
    154. 154)
      • 36. Suri, M., Suriova, N., Cebecauer, T., et al: ‘Solar resource mapping in Zambia’, in ‘Energy sector management assistance program’ (World Bank, Washington DC, 2014). Available at http://documents.worldbank.org/curated/en/259231467986245030/pdf/98030-ESMAP-P145271-Box391499B-PUBLIC-WBG-ESMAP-Zambia-Solar-Modeling-Report-2014-11-26.pdf, accessed 03 March 2017.
    155. 155)
      • 126. Adefarati, T., Bansal, R.C.: ‘Reliability assessment of distribution system with the integration of renewable distributed generation’, Appl. Energy, 2016, 185, pp. 151171.
    156. 156)
      • 50. Yu, H.Y., Bansal, R.C., Dong, Z.Y.: ‘Fast computation of the maximum wind penetration based on frequency response in small isolated power systems’, Appl. Energy, 2014, 113, pp. 648659.
    157. 157)
      • 111. Kabir, S., Krause, O., Bartlett, S.: ‘Impact of large-scale photovoltaic system on short and long term voltage stability in sub-transmission network’. Australian University Power Engineering Conf., Queensland, October 2013, pp. 16.
    158. 158)
      • 51. Yoon, M., Yoon, Y.T., Jang, G.: ‘A study on maximum wind power penetration limit in island power system considering high-voltage direct current interconnections’ (Department of Electrical and Computer Engineering, Seoul, 2015). Available at http://www.mdpi.com/1996-1073/8/12/12425, accessed 20 October 2016.
    159. 159)
      • 49. Shah, R., Mithulananthan, N., Bansal, R.C., et al: ‘A review of key power system stability challenges for large-scale PV integration’, Renew. Sustain. Energy Rev., 2015, 41, pp. 14231436.
    160. 160)
      • 162. Dzobo, O., Herman, R., Gaunt, T.: ‘Reliability worth assessment of electricity consumers: a South African case study’, J. Energy South Africa, 2012, 23, (3), pp. 3139.
    161. 161)
      • 104. Spalding-Fecher, R., Senatla, M., Yamba, F., et al: ‘Electricity supply and demand scenarios for the Southern African power pool’, Energy Policy, 2017, 101, pp. 403414.
    162. 162)
      • 30. Pandey, A.K., Tyagi, V.V., Selvaraj, J.A., et al: ‘Recent advances in solar photovoltaic systems for emerging trends and advanced applications’, Renew. Sustain. Energy Rev., 2016, 53, pp. 859884.
    163. 163)
      • 38. González, I.H., Ruiz, P., Sgobbi, A., et al: ‘Addressing flexibility in energy system models’ (Joint Research Centre, Westerduingweg, 2015). Available at https://setis.ec.europa.eu/sites/default/files/reports/Addressing-flexibility-in-energy-system-models.pdf, accessed 17 April 2017.
    164. 164)
      • 159. Carpinelli, G., Celli, G., Pilo, F., et al: ‘Embedded generation planning under uncertainty including power quality issues’, Eur. Trans. Electr. Power, 2003, 13, (6), pp. 381389.
    165. 165)
      • 71. Deane, J.P., Dalton, G., Gallachóir, B.P.Ó: ‘Modelling the economic impacts of 500 MW of wave power in Ireland’, Energy Policy, 2012, 45, pp. 614627.
    166. 166)
      • 13. Bloomberg: ‘Cheapest solar in Africa comes to Zambia through World Bank plan’, (Bloomberg, New York, 2016). Available at https://www.bloomberg.com/news/articles/2016-06-13/cheapest-solar-in-africa-comes-to-zambia-through-world-bank-plan, accessed 18 April 2017 .
    167. 167)
      • 63. Després, J., Hadjsaid, N., Criqui, P., et al: ‘Modelling the impacts of variable renewable sources on the power sector: reconsidering the typology of energy modelling tools’, Energy, 2015, 80, pp. 486495.
    168. 168)
      • 99. Palmintier, B.S.: ‘Incorporating operational flexibility into electric generation planning: impacts and methods for system design and policy analysis’ (Massachusetts Institute of Technology, Massachusetts, 2013). Available at http://web.mit.edu, accessed 25 March 2017.
    169. 169)
      • 24. Global Wind Energy Council: ‘Opening up new markets for business’ (Global Wind Energy Council, Ulaanbaatar, Mongolia, 2016). Available at http://www.gwec.net/publications/global-wind-report-2/, accessed 15 May 2017.
    170. 170)
      • 157. Gidwani, L., Tiwari, H., Bansal, R.C.: ‘Improving power quality of wind energy conversion system with unconventional power electronic interface’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 445453.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0380
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0380
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address