Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Synthetic inertia versus fast frequency response: a definition

This study discusses synthetic inertia from the perspective of a transmission system operator and compares it to fast frequency response based on frequency deviation. A clear distinction of the meanings between these concepts is discussed, the basis of which is a description of their characteristics. A contribution and the purpose is the clarification of these concepts in addition to share the perspectives of a transmission system operator. The frequency response of a power system based on the Nordic system is examined for future scenarios with large amounts of wind power. Conclusions are drawn regarding the benefit of synthetic inertia compared with fast frequency response based on frequency deviation.

References

    1. 1)
      • 11. Wang-Hansen, M., Josefsson, R., Mehmedovic, H.: ‘Frequency controlling wind power modeling of control strategies’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 954959.
    2. 2)
      • 21. Fischer, M.: ‘Operational experiences with inertial response provided by type 4 wind turbines’, IET Renew. Power Gener., 2006, 10, (1), pp. 1724.
    3. 3)
      • 5. Pelletier, M.A., Phethean, M.E., Nutt, S.: ‘Grid code requirements for artificial inertia control systems in the New Zealand power system’. 2012 IEEE Power and Energy Society General Meeting, 2012.
    4. 4)
      • 13. Biegel, B., Juelsgaard, M., Kraning, M., et al: ‘Wind turbine pitch optimization’. Proc. of the IEEE Int. Conf. on Control Applications, 2011, pp. 13271334.
    5. 5)
      • 18. Future power system security program’. Technical Report, Australian Energy Market Operator (AEMO), 2016. Available at http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/-/media/823E457AEA5E43BE83DDD56767126BF2.ashx.
    6. 6)
      • 22. Ackermann, T.: ‘Wind power in power systems’ (Wiley, 2012, 2nd edn.).
    7. 7)
      • 15. Morren, J., de Haan, S.W.H., Kling, W.L., et al: ‘Wind turbines emulating inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
    8. 8)
      • 6. Holttinen, H.: ‘Impact of hourly wind power variations on the system operation in the Nordic countries’, Wind Energy, 2005, 8, pp. 197218.
    9. 9)
      • 19. ‘ENTSO-E, Common Glossary’. Available at https://emr.entsoe.eu/glossary/bin/view/ENTSO-E+Common+Glossary/Inertia.
    10. 10)
      • 1. Ørum, E., Kuivaniemi, M., Laasonen, M., et al: ‘Future system inertia’. Technical Report, ENTSO-E, 2015. Available at https://www.entsoe.eu/Documents/Publications/SOC/Nordic/Nordic/report/Future/System/Inertia.pdf.
    11. 11)
      • 8. Balancing and frequency control’. Technical Report, North American Electric Reliabiliy Corporation, 2011. Available at http://library.sgul.ac.uk/images/helpsheets/User%20Helpsheets/Vancouver_ref_v10.pdf.
    12. 12)
      • 12. Jauch, C.: ‘A flywheel in a wind turbine rotor for inertia control’, Wind Energy, 2015, 18, (9), pp. 16451656.
    13. 13)
      • 3. Tielens, P., Hertem, D.V.: ‘The relevance of inertia in power systems’, Renew. Sustain. Energy Rev., 2016, 55, pp. 9991009. Available at http://dx.doi.org/10.1016/j.rser.2015.11.016.
    14. 14)
      • 9. Chamorro, H., Ghandhari, M., Eriksson, R.: ‘Wind power impact on power system frequency response’. 45th North American Power Symp., NAPS 2013, Manhattan, 2013.
    15. 15)
      • 20. E. Group: ‘ENTSO-E network code for requirements for grid connection applicable to all generators’. Technical Report, March 2013.
    16. 16)
      • 16. Delille, G., François, B., Malarange, G.: ‘Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 931939.
    17. 17)
      • 7. Olsson, J., Skoglund, L., Carlsson, F., et al: ‘Future wind power production variations in the Swedish power system’. IEEE PES Innovative Smart Grid Technologies Conf. Europe, ISGT Europe, 2010, pp. 17.
    18. 18)
      • 23. ENTSO-E: ‘Analysis & review of requirements for automatic reserves in the Nordic synchronous system’. Technical Report, 2011.
    19. 19)
      • 2. Moore, I.: ‘Inertial response from wind turbines’. PhD dissertation, Cardiff University, 2012.
    20. 20)
      • 17. Summary of studies on rate of change of frequency events on the all-island system’. EirGrid/SONI, Technical Report, 2012. Available at http://www.eirgrid.ie/site-files/library/EirGrid/Summary-of-Studies-on-Rate-of-Change-of-Frequency-events-on-the-All-Island\\-System.pdf.
    21. 21)
      • 25. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Inc, New York, 1993).
    22. 22)
      • 4. Gonzalez-Longatt, F.: ‘Impact of synthetic inertia from wind power on the protection/control schemes of future power systems: simulation study’. 11th Int. Conf. on Developments in Power Systems Protection, 2012.
    23. 23)
      • 14. Ye, H., Pei, W., Qi, Z.: ‘Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 34143423.
    24. 24)
      • 24. Yang, W., Norrlund, P., Saarinen, L., et al: ‘Wear reduction for hydropower turbines considering frequency quality of power systems: a study on controller filters’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 11911201.
    25. 25)
      • 10. Gonzalez-Longatt, F.: ‘Effects of the synthetic inertia from wind power on the total system inertia: simulation study’. 2012 2nd Int. Symp. on Environment Friendly Energies and Applications, Newcastle upon Tyne, 2012, pp. 389395, doi: 10.1109/EFEA.2012.6294049.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0370
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0370
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address