http://iet.metastore.ingenta.com
1887

access icon openaccess The Migrate project: the challenges of operating a transmission grid with only inverter-based generation. A grid-forming control improvement with transient current-limiting control

  • PDF
    1.783829689025879MB
  • XML
    82.9287109375Kb
  • HTML
    95.5703125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/12/5/IET-RPG.2017.0369.html;jsessionid=1nbfbaqlka8bj.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2017.0369&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Guerrero, J.M., Chandorkar, M.C., Lee, T.-L., et al: ‘Advanced control architectures for intelligent microgrids – part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    2. 2)
      • 2. Hasanzadeh, A., Onar, O.C., Mokhtari, H., et al: ‘A proportional-resonant controller-based wireless control strategy with a reduced number of sensors for parallel-operated UPSs’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 468478.
    3. 3)
      • 3. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
    4. 4)
      • 4. Zamani, M.A., Yazdani, A., Sidhu, T.S.: ‘A control strategy for enhanced operation of inverter-based microgrids under transient disturbances and network faults’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 17371747.
    5. 5)
      • 5. Denis, G., Prevost, T., Panciatici, P., et al: ‘Review on potential strategies for transmission grid operations based on power electronics interfaced voltage sources’. 2015 IEEE Power Energy Society General Meeting, 2015, pp. 15.
    6. 6)
      • 6. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    7. 7)
      • 7. Schiffer, J., Ortega, R., Astolfi, A., et al: ‘Conditions for stability of droop-controlled inverter-based microgrids’, Automatica, 2014, 50, (10), pp. 24572469.
    8. 8)
      • 8. Denis, G., Prevost, T., Panciatici, P., et al: ‘Improving robustness against grid stiffness, with internal control of an AC voltage-controlled VSC’. Proc. 2016 IEEE Power Energy Society General Meeting (PESGM), Boston, MA, July 2016, pp. 15.
    9. 9)
      • 9. Denis, G., Prevost, T., Kestelyn, X., et al: ‘Internal control stability assessment method of a VSC-based transmission grid’. 2016 18th European Conf. Power Electronics Applications (EPE'16 ECCE Europe), 2016, pp. 110.
    10. 10)
      • 10. Salha, F., Colas, F., Guillaud, X.: ‘Virtual resistance principle for the overcurrent protection of PWM voltage source inverter’. 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 16.
    11. 11)
      • 11. He, J., Li, Y.W.: ‘Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 25252538.
    12. 12)
      • 12. Paquette, A.D., Divan, D.M.: ‘Virtual impedance current limiting for inverters in microgrids with synchronous generators’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16301638.
    13. 13)
      • 13. Kundur, P., Balu, N., Lauby, M.: ‘Power system stability and control’, vol. 23 (McGraw-Hill New York, 1994).
    14. 14)
      • 14. Migrate Project: Deliverable 3.1: ‘Description of system needs and test cases’, 2016, pp. 156. Available at www.h2020-migrate.eu/downloads.html, accessed May 2017.
    15. 15)
      • 15. Yu, M., Roscoe, A., Booth, C., et al: ‘Use of an inertia-less virtual synchronous machine within future power networks with high penetrations of converters’. Power Systems Computation Conf. (PSCC 2016), 2016.
    16. 16)
      • 16. RTE: ‘Documentation technique de référence’, 2017.
    17. 17)
      • 17. Simpson-porco, J.W., Dörfler, F., Bullo, F.: ‘Synchronization and power sharing for droop-controlled inverters in islanded microgrids’, Automatica, 2013, 49, (9), pp. 26032611.
    18. 18)
      • 18. Dörfler, F., Bullo, F.: ‘Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators’, SIAM J. Control Optim., 2012, 50, (3), pp. 16161642.
    19. 19)
      • 19. Ashabani, S.M., Mohamed, Y.A.-R.I., Member, S., et al: ‘Integrating VSCs to weak grids by nonlinear power damping controller with self-synchronization capability’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 805814.
    20. 20)
      • 20. Harnefors, L.: ‘Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 22392248.
    21. 21)
      • 21. Mohamed, Y., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    22. 22)
      • 22. Guerrero, J.M., de Vicuna, L.G., Matas, J., et al: ‘A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 12051213.
    23. 23)
      • 23. Majumder, R., Member, S., Chaudhuri, B., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
    24. 24)
      • 24. Xin, H., Huang, L., Zhang, L., et al: ‘Synchronous instability mechanism of P-f droop-controlled voltage source converter caused by current saturation’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 52065207.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0369
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address