http://iet.metastore.ingenta.com
1887

access icon openaccess The Migrate project: the challenges of operating a transmission grid with only inverter-based generation. A grid-forming control improvement with transient current-limiting control

  • PDF
    1.783829689025879MB
  • XML
    82.9287109375Kb
  • HTML
    95.5703125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/12/5/IET-RPG.2017.0369.html;jsessionid=2bdhgl8cuf7fv.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2017.0369&mimeType=html&fmt=ahah

References

    1. 1)
      • J.M. Guerrero , M.C. Chandorkar , T.-L. Lee .
        1. Guerrero, J.M., Chandorkar, M.C., Lee, T.-L., et al: ‘Advanced control architectures for intelligent microgrids – part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
        . IEEE Trans. Ind. Electron. , 4 , 1254 - 1262
    2. 2)
      • A. Hasanzadeh , O.C. Onar , H. Mokhtari .
        2. Hasanzadeh, A., Onar, O.C., Mokhtari, H., et al: ‘A proportional-resonant controller-based wireless control strategy with a reduced number of sensors for parallel-operated UPSs’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 468478.
        . IEEE Trans. Power Deliv. , 1 , 468 - 478
    3. 3)
      • F. Katiraei , M.R. Iravani , P.W. Lehn .
        3. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
        . IEEE Trans. Power Deliv. , 1 , 248 - 257
    4. 4)
      • M.A. Zamani , A. Yazdani , T.S. Sidhu .
        4. Zamani, M.A., Yazdani, A., Sidhu, T.S.: ‘A control strategy for enhanced operation of inverter-based microgrids under transient disturbances and network faults’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 17371747.
        . IEEE Trans. Power Deliv. , 4 , 1737 - 1747
    5. 5)
      • G. Denis , T. Prevost , P. Panciatici .
        5. Denis, G., Prevost, T., Panciatici, P., et al: ‘Review on potential strategies for transmission grid operations based on power electronics interfaced voltage sources’. 2015 IEEE Power Energy Society General Meeting, 2015, pp. 15.
        . 2015 IEEE Power Energy Society General Meeting , 1 - 5
    6. 6)
      • N. Pogaku , M. Prodanovic , T.C. Green .
        6. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
        . IEEE Trans. Power Electron. , 2 , 613 - 625
    7. 7)
      • J. Schiffer , R. Ortega , A. Astolfi .
        7. Schiffer, J., Ortega, R., Astolfi, A., et al: ‘Conditions for stability of droop-controlled inverter-based microgrids’, Automatica, 2014, 50, (10), pp. 24572469.
        . Automatica , 10 , 2457 - 2469
    8. 8)
      • G. Denis , T. Prevost , P. Panciatici .
        8. Denis, G., Prevost, T., Panciatici, P., et al: ‘Improving robustness against grid stiffness, with internal control of an AC voltage-controlled VSC’. Proc. 2016 IEEE Power Energy Society General Meeting (PESGM), Boston, MA, July 2016, pp. 15.
        . Proc. 2016 IEEE Power Energy Society General Meeting (PESGM) , 1 - 5
    9. 9)
      • G. Denis , T. Prevost , X. Kestelyn .
        9. Denis, G., Prevost, T., Kestelyn, X., et al: ‘Internal control stability assessment method of a VSC-based transmission grid’. 2016 18th European Conf. Power Electronics Applications (EPE'16 ECCE Europe), 2016, pp. 110.
        . 2016 18th European Conf. Power Electronics Applications (EPE'16 ECCE Europe) , 1 - 10
    10. 10)
      • F. Salha , F. Colas , X. Guillaud .
        10. Salha, F., Colas, F., Guillaud, X.: ‘Virtual resistance principle for the overcurrent protection of PWM voltage source inverter’. 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 16.
        . 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe) , 1 - 6
    11. 11)
      • J. He , Y.W. Li .
        11. He, J., Li, Y.W.: ‘Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 25252538.
        . IEEE Trans. Ind. Appl. , 6 , 2525 - 2538
    12. 12)
      • A.D. Paquette , D.M. Divan .
        12. Paquette, A.D., Divan, D.M.: ‘Virtual impedance current limiting for inverters in microgrids with synchronous generators’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16301638.
        . IEEE Trans. Ind. Appl. , 2 , 1630 - 1638
    13. 13)
      • P. Kundur , N. Balu , M. Lauby . (1994)
        13. Kundur, P., Balu, N., Lauby, M.: ‘Power system stability and control’, vol. 23 (McGraw-Hill New York, 1994).
        .
    14. 14)
      • 14. Migrate Project: Deliverable 3.1: ‘Description of system needs and test cases’, 2016, pp. 156. Available at www.h2020-migrate.eu/downloads.html, accessed May 2017.
        . , 1 - 56
    15. 15)
      • M. Yu , A. Roscoe , C. Booth .
        15. Yu, M., Roscoe, A., Booth, C., et al: ‘Use of an inertia-less virtual synchronous machine within future power networks with high penetrations of converters’. Power Systems Computation Conf. (PSCC 2016), 2016.
        . Power Systems Computation Conf. (PSCC 2016)
    16. 16)
      • 16. RTE: ‘Documentation technique de référence’, 2017.
        .
    17. 17)
      • J.W. Simpson-porco , F. Dörfler , F. Bullo .
        17. Simpson-porco, J.W., Dörfler, F., Bullo, F.: ‘Synchronization and power sharing for droop-controlled inverters in islanded microgrids’, Automatica, 2013, 49, (9), pp. 26032611.
        . Automatica , 9 , 2603 - 2611
    18. 18)
      • F. Dörfler , F. Bullo .
        18. Dörfler, F., Bullo, F.: ‘Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators’, SIAM J. Control Optim., 2012, 50, (3), pp. 16161642.
        . SIAM J. Control Optim. , 3 , 1616 - 1642
    19. 19)
      • S.M. Ashabani , Y.A.-R.I. Mohamed , S. Member .
        19. Ashabani, S.M., Mohamed, Y.A.-R.I., Member, S., et al: ‘Integrating VSCs to weak grids by nonlinear power damping controller with self-synchronization capability’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 805814.
        . IEEE Trans. Power Syst. , 2 , 805 - 814
    20. 20)
      • L. Harnefors .
        20. Harnefors, L.: ‘Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 22392248.
        . IEEE Trans. Ind. Electron. , 4 , 2239 - 2248
    21. 21)
      • Y. Mohamed , E.F. El-Saadany .
        21. Mohamed, Y., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
        . IEEE Trans. Power Electron. , 6 , 2806 - 2816
    22. 22)
      • J.M. Guerrero , L.G. de Vicuna , J. Matas .
        22. Guerrero, J.M., de Vicuna, L.G., Matas, J., et al: ‘A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 12051213.
        . IEEE Trans. Power Electron. , 5 , 1205 - 1213
    23. 23)
      • R. Majumder , S. Member , B. Chaudhuri .
        23. Majumder, R., Member, S., Chaudhuri, B., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
        . IEEE Trans. Power Syst. , 2 , 796 - 808
    24. 24)
      • H. Xin , L. Huang , L. Zhang .
        24. Xin, H., Huang, L., Zhang, L., et al: ‘Synchronous instability mechanism of P-f droop-controlled voltage source converter caused by current saturation’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 52065207.
        . IEEE Trans. Power Syst. , 6 , 5206 - 5207
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0369
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0369
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address