access icon free Optimal unit commitment based on second-order cone programming in high wind power penetration scenarios

With the increase in wind power integration in power systems, wind power uncertainty can no longer be neglected in the determination of the day-ahead power generation schedules. Aiming to achieve the best economy of power generation of the system, this study proposes a unit commitment (UC) optimal model for thermal plants, considering the fuel costs required for compensating for the wind power below schedule. The AC power flow equations are included as constraints based on the second-order cone programming (SOCP) method. SOCP is further improved here by considering line loss as constraint to guarantee the validity of its solution. Research shows that generators with lower minimum-output and fuel-cost rates are preferred to be online and that reasonable wind curtailment is beneficial for reducing the generation cost. Finally, AC power flow verification is carried out and the results suggest that the improved SOCP method could model the AC power flow equations correctly. The proposed methodology can be effective in making UC decisions for power grids with high wind power penetration.

Inspec keywords: load flow; power generation dispatch; power generation economics; thermal power stations; wind power plants; convex programming; power generation scheduling

Other keywords: high wind power penetration scenarios; wind curtailment; thermal plants; unit commitment optimal model; AC power flow equations; SOCP method; fuel costs; second-order cone programming; UC optimal model; power grids; AC power flow verification

Subjects: Thermal power stations and plants; Wind power plants; Power system management, operation and economics; Optimisation techniques

References

    1. 1)
      • 17. Jabr, R.A.: ‘A conic quadratic format for the load flow equations of meshed networks’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22852286.
    2. 2)
      • 24. Luo, F., Meng, K., Dong, Z.Y., et al: ‘Coordinated operational planning for wind farm with battery energy storage system’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 253262.
    3. 3)
      • 18. Qin, M., Chan, K.W., Chung, C.Y., et al: ‘Optimal planning and operation of energy storage systems in radial networks for wind power integration with reserve support’, IET Gener. Transm. Distrib., 2016, 10, (8), pp. 20192025.
    4. 4)
      • 10. Uçkun, C., Botterud, A., Birge, J.R., et al: ‘An improved stochastic unit commitment formulation to accommodate wind uncertainty’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 25072517.
    5. 5)
      • 25. Arroyo, J.M., Conejo, A.J.: ‘Optimal response of a thermal unit to an electricity spot market’, IEEE Trans. Power Syst., 2000, 15, (3), pp. 10981104.
    6. 6)
      • 21. Baradar, M., Hesamzadeh, M.R., Ghandhari, M.: ‘Second-order cone programming for optimal power flow in vsc-type ac-dc grids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 42824291.
    7. 7)
      • 1. National Energy Administration of China’. Available athttp://www.nea.gov.cn/2017-01/26/c_136014615.htm, accessed 27 May 2017.
    8. 8)
      • 20. Bai, Y., Zhong, H., Xia, Q., et al: ‘A decomposition method for network-constrained unit commitment with AC power flow constraints’, Energy, 2015, 88, pp. 595603.
    9. 9)
      • 31. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    10. 10)
      • 14. Farivar, M., Low, S.H.: ‘Branch flow model: relaxations and convexification – part I’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 25542564.
    11. 11)
      • 11. Nasri, A., Kazempour, S.J., Conejo, A.J., et al: ‘Network-constrained AC unit commitment under uncertainty: a benders’ decomposition approach’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 412422.
    12. 12)
      • 2. Zou, P., Chen, Q., Yu, Y., et al: ‘Electricity markets evolution with the changing generation mix: an empirical analysis based on China 2050 high renewable energy penetration roadmap’, Appl. Energy, 2017, 185, pp. 5667.
    13. 13)
      • 12. Fang, X., Li, F., Wei, Y., et al: ‘Reactive power planning under high penetration of wind energy using Benders decomposition’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18351844.
    14. 14)
      • 28. IBM ILOG CPLEX V12.6: ‘User's manual for CPLEX’, International Business Machines Corp., 2015.
    15. 15)
      • 8. Huang, Y., Zheng, Q.P., Wang, J.: ‘Two-stage stochastic unit commitment model including non-generation resources with conditional value-at-risk constraints’, Electr. Power Syst. Res., 2014, 116, pp. 427438.
    16. 16)
      • 15. Gan, L., Li, N., Topcu, U., et al: ‘Exact convex relaxation of optimal power flow in radial networks’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 7287.
    17. 17)
      • 27. Abdelouadoud, S.Y., Girard, R., Neirac, F.P., et al: ‘Optimal power flow of a distribution system based on increasingly tight cutting planes added to a second order cone relaxation’, Int. J. Electr. Power Energy Syst., 2015, 69, pp. 917.
    18. 18)
      • 3. Zhang, Y., Dong, Z.Y., Luo, F., et al: ‘Optimal allocation of battery energy storage systems in distribution networks with high wind power penetration’, IET Renew. Power Gener., 2016, 10, (8), pp. 11051113.
    19. 19)
      • 32. Chen, Y., Wen, J., Cheng, S.: ‘Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 294301.
    20. 20)
      • 7. Hojjat, M., Javidi, M.H.: ‘Chance-constrained programming approach to stochastic congestion management considering system uncertainties’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 14211429.
    21. 21)
      • 30. Reddy, S.K., Panwar, L.K., Panigrahi, B.K., et al: ‘Modeling of carbon capture technology attributes for unit commitment in emission-constrained environment’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 662671.
    22. 22)
      • 23. Yuan, X., Tian, H., Zhang, S., et al: ‘Second-order cone programming for solving unit commitment strategy of thermal generators’, Energy Convers. Manage., 2013, 76, pp. 2025.
    23. 23)
      • 26. Abdelouadoud, S.Y., Girard, R., Neirac, F.-P., et al: ‘Iterative linear cuts strengthening the second-order cone relaxation of the distribution system optimal power flow problem’. Proc. T&D Conf. Expo., Chicago, USA, April 2014, pp. 14.
    24. 24)
      • 16. Kocuk, B., Santanu, S.D., Sun, X.A.: ‘Strong SOCP relaxations for the optimal power flow problem’, Oper. Res., 2016, 64, (6), pp. 11771196.
    25. 25)
      • 6. Wang, Q., Guan, Y., Wang, J.: ‘A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 206215.
    26. 26)
      • 22. Quan, R., Jian, J.B., Mu, Y.D.: ‘Tighter relaxation method for unit commitment based on second-order cone programming and valid inequalities’, Int. J. Elect. Power Energy Syst., 2014, 55, pp. 8290.
    27. 27)
      • 9. Papavasiliou, A., Oren, S.S., Rountree, B.: ‘Applying high performance computing to transmission-constrained stochastic unit commitment for renewable energy integration’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11091120.
    28. 28)
      • 29. Löfberg, J.: ‘YALMIP: A toolbox for modeling and optimization in MATLAB’. Proc. IEEE Int. Symp. Computer Aided Control System Design, Taipei, Taiwan, September 2004, pp. 284289.
    29. 29)
      • 13. Jabr, R.A.: ‘Radial distribution load flow using conic programming’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 14581459.
    30. 30)
      • 5. Wu, Z., Zeng, P., Zhang, X.-P., et al: ‘A solution to the chance-constrained two-stage stochastic program for unit commitment with wind energy integration’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 41854196.
    31. 31)
      • 19. Li, Q., Ayyanar, R., Vittal, V.: ‘Convex optimization for DES planning and operation in radial distribution systems with high penetration of photovoltaic resources’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 985995.
    32. 32)
      • 4. Amini, M.H., Kargarian, A., Karabasoglu, O.: ‘ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation’, Electr. Power Syst. Res., 2016, 140, pp. 378390.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0353
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0353
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading