access icon free Algorithm on fuzzy adaptive backstepping control of fractional order for doubly-fed induction generators

This study proposes a fractional-order control for a variable speed wind energy system equipped with a doubly-fed induction generator. The control scheme under study, which is applied to the generator-side converter, combines the feedback form of backstepping technique with two Takagi–Sugeno fuzzy systems in the fractional order. The resulting virtual and global control laws improve the system's robustness and tracking performance. Moreover, this allows getting rid of the requirements of the generator parameters knowledge, which is an initial condition to the conventional backstepping controller. This control system, with a fractional Lyapunov function, assures the global system stability, aims to attenuate the effect of external disturbances and the model uncertainties on the power transferred to the grid. The comparison of the simulation results between the proposed control technique and its integer-order counterpart confirms the efficiency of the fractional suggested approach.

Inspec keywords: control system synthesis; Lyapunov methods; control nonlinearities; adaptive control; nonlinear control systems; uncertain systems; stability; closed loop systems; fuzzy systems; fuzzy control; asynchronous generators; robust control; feedback

Other keywords: fractional-order control; integer-order counterpart; control scheme; resulting virtual control laws; variable speed wind energy system; feedback form; control technique; generator parameters knowledge; fractional suggested approach; doubly-fed induction generators; global control laws; induction generator; fractional order; conventional backstepping controller; generator-side converter; backstepping technique; Takagi–Sugeno fuzzy systems; control system; global system stability; fractional Lyapunov function; fuzzy adaptive backstepping control

Subjects: Self-adjusting control systems; Fuzzy control; Nonlinear control systems; Control system analysis and synthesis methods; Control of electric power systems; Stability in control theory

References

    1. 1)
      • 21. Ezziani, N., Essounbouli, N., Hamzaoui, A.: ‘Backstepping fuzzy adaptive controller of induction machine’. 16th Mediterranean Conf. on Control and Automation, Ajaccio, France, June 2008, pp. 16221627.
    2. 2)
      • 9. Li, H., Wan, Q., Ma, Z.: ‘The influence of electrical parameters of double fed induction generator on the transient voltage stability’. Int. Conf. on Electrical and Control Engineering (ICECE), Wuhan, China, June 2010, pp. 44224424.
    3. 3)
      • 14. Shah, A.P., Mehta, A.J.: ‘Direct power control of DFIG using super-twisting algorithm based on second-order sliding mode control’. 14th Int.Workshopon Variable Structure Systems (VSS), Nanjing, China, June 2016, pp. 136141.
    4. 4)
      • 1. Liu, L., Xie, D.: ‘Performance comparison of two different filter design approaches for torsional vibration damping in a doubly fed induction generator-based wind turbine’, J. Eng.-JOE, 2015, 2015, (6), pp. 197204.
    5. 5)
      • 11. Tohidi, A., Shamsaddinlou, A., Sedigh, A.K.: ‘Multivariable input-output linearization sliding mode control of DFIG based wind energy conversion system’. 9th Asian Control Conf. (ASCC), Istanbul, Turkey, June 2013, pp. 16.
    6. 6)
      • 18. Bossoufi, B., Karim, M., Lagrioui, A., et al: ‘Observer backstepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation’, Renew. Energy, 2015, 81, pp. 903917.
    7. 7)
      • 3. Barazarte, R.Y., Gonzalez, G., Hall, E.: ‘Comparison of electric generators used for wind generation’, IEEE Latin Am. Trans., 2011, 9, (7), pp. 10401044.
    8. 8)
      • 6. Boutoubat, M., Mokrani, L., Machmoum, M.: ‘Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement’, Renew. Energy, 2013, 50, pp. 378386.
    9. 9)
      • 24. Efe, M.Ã.Ű.: ‘Fractional order systems in industrial automation – a survey’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 582591.
    10. 10)
      • 4. Yu, S., Emami, K., Fernando, T., et al: ‘State estimation of doubly fed induction generator wind turbine in complex power systems’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 49354944.
    11. 11)
      • 2. Meenakshi, R., Muthu, R.: ‘Doubly fed induction generator for wind energy conversion system – a survey’. Int. Conf. on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, April 2013, pp. 617628.
    12. 12)
      • 27. Chen, D., Zhang, R., Liu, X., et al: ‘Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (12), pp. 41054121.
    13. 13)
      • 8. Assareh, E., Biglari, M.: ‘A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm’, Renew. Sust. Energy Rev., 2015, 51, pp. 10231037.
    14. 14)
      • 13. Saad, N.H., Sattar, A.A., Mansour, A.E.A.M.: ‘Low voltage ride through of doubly-fed induction generator connected to the grid using sliding mode control strategy’, Renew. Energy, 2015, 80, pp. 583594.
    15. 15)
      • 26. Wei, Y., Chen, Y., Liang, S., et al: ‘A novel algorithm on adaptive backstepping control of fractional order systems’, Neurocomputing, 2015, 165, pp. 395402.
    16. 16)
      • 23. Krishnan, B., Jayakumar, K.: ‘Controllability of fractional dynamical systems with prescribed controls’, IET Control Theory Applic., 2013, 7, (9), pp. âĂŐ1242âĂŐ1248.
    17. 17)
      • 16. Khemiri, N., Khedher, A., Mimouni, M.F.: ‘A backstepping control strategy applied to the connected hybrid renewable energy system operated in MPPT’. 8th Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, March 2013, pp. 110.
    18. 18)
      • 10. Martinez, M., Susperregui, A., Tapia, G., et al: ‘Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages’, IET Renew. Power Gener., 2013, 7, (4), pp. 370379.
    19. 19)
      • 5. Howard, D.F., Liang, J., Harley, R.G.: ‘Short-circuit modeling of DFIGs with uninterrupted control’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (1), pp. 4757.
    20. 20)
      • 19. Tarek, A., Abdelaziz, H., Najib, E., et al: ‘An adaptive backstepping controller of doubly-fed induction generators’. 3rd Int. & Conf. on Control, Engineering Information Technology (CEIT), Tlemcen, Algeria, May 2015, pp. 16.
    21. 21)
      • 17. Bossoufi, B., Aroussi, H.A., Ziani, E.M., et al: ‘Robust adaptive backstepping control approach of DFIG generators for wind turbines variable-speed’. Int. Renewable and Sustainable Energy Conf. (IRSEC), Ouarzazate, Morocco, October 2014, pp. 791797.
    22. 22)
      • 12. Djoudi, A., Chekireb, H., Berkouk, E.M.: ‘Robust sliding mode observer/controller of wind energy conversion system based on DFIG’. 3rd Int. Conf. on Systems and Control (ICSC), Algiers, Algeria, October 2013, pp. 886893.
    23. 23)
      • 25. Nikdel, N., Badamchizadeh, M., Azimirad, V., et al: ‘Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 62496256.
    24. 24)
      • 7. Belmokhtar, K., Doumbia, M.L., Agbossou, K.: ‘Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)’, Energy, 2014, 76, pp. 679693.
    25. 25)
      • 22. Ezziani, N., Essounbouli, N., Hamzaoui, A.: ‘An AFB controller of induction machine under amplitude and rate saturation constraints’. 35th Annual Conf. of IEEE Industrial Electronics, Porto, Portugal, November 2009, pp. 10261032.
    26. 26)
      • 20. Tan, H.: ‘field orientation and adaptive backstepping for induction motor control’. Thirty-Fourth IAS Annual Meeting. Conf. Record of the 1999 IEEE, Phoenix, AZ, USA, October 1999, pp. 23572363.
    27. 27)
      • 15. Wang, Y., Wu, Q., Gong, W., et al: ‘H ∞robust current control for DFIG based wind turbine subject to grid voltage distortions’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 816825.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0342
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading