access icon free Multiobjective capacity planning of photovoltaics in smart electrical energy networks: improved normal boundary intersection method

Incentive-based regulations, toward higher performance networks, are the main driver for minimising losses in distribution systems. On the other hand, more renewable generation is needed to achieve environmental targets. Hence, a multiobjective model is introduced in this study seeking to minimise energy losses as well as maximise renewable generation in radial distribution systems (RDSs). Two alternative control strategies of future smart grids such as reactive power management using adaptive power factor control and coordinated voltage control are considered in the optimisation problem. The problem is subjected to the various technical constraints such as voltage limits, thermal limits and reactive capability limits of photovoltaic (PV) penetration, power factor regulations and underload tap changer adjustment. Also, the uncertainties of load and renewable generation are considered, too. Then, the obtained non-linear programming problem is relaxed and reformulated as a well-suited and computationally efficient second-order cone programming problems. To obtain more efficient and evenly distributed Pareto set to help decision-making process, a modified normal boundary intersection method is introduced for solution methodology. The implementation of the proposed framework on IEEE 33-bus RDSs shows the gains that the flexibility provided by innovative control strategies can have on energy loss reduction and PV capacity.

Inspec keywords: power generation control; decision making; nonlinear programming; smart power grids; power factor; power generation economics; adaptive control; power generation planning; distribution networks; photovoltaic power systems

Other keywords: optimisation problem; future smart grids; reactive capability limits; energy loss minimisation; multiobjective photovoltaics capacity planning; environmental targets; improved normal boundary intersection method; power factor regulations; thermal limits; energy loss reduction; renewable generation; decision-making process; reactive power management; smart electrical energy networks; underload tap changer adjustment; second-order cone programming problems; adaptive power factor control; technical constraints; renewable generation maximisation; performance networks; IEEE 33-bus RDS; modified normal boundary intersection method; coordinated voltage control; radial distribution systems; nonlinear programming problem; distributed Pareto set; photovoltaic penetration; voltage limits; incentive-based regulations; innovative control strategies; PV capacity

Subjects: Distribution networks; Power system management, operation and economics; Power system planning and layout; Optimisation techniques; Self-adjusting control systems; Control of electric power systems; Optimisation techniques; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 43. Mallikarjun, S., Lewis, H.F.: ‘Energy technology allocation for distributed energy resources: a strategic technology-policy framework’, Energy, 2014, 72, pp. 783799.
    2. 2)
      • 19. Kumar, A., Gao, W.: ‘Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity markets’, IET Gener. Transm. Distrib., 2010, 4, (2), pp. 281298.
    3. 3)
      • 5. Quezada, V.H.M., Abbad, J.R., Roman, T.G.S.: ‘Assessment of energy distribution losses for increasing penetration of distributed generation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 533540.
    4. 4)
      • 49. Salameh, Z., Borowy, B., Amin, A.: ‘Photovoltaic module-site matching based on the capacity factors’, IEEE Trans. Energy Convers., 1995, 10, (2), pp. 326332.
    5. 5)
      • 35. Arya, L., Koshti, A., Choube, S.: ‘Distributed generation planning using differential evolution accounting voltage stability consideration’, Int. J. Electr. Power Energy Syst., 2012, 42, (1), pp. 196207.
    6. 6)
      • 12. Hung, D.Q., Mithulananthan, N., Bansal, R.: ‘Analytical expressions for DG allocation in primary distribution networks’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 814820.
    7. 7)
      • 50. Pinheiro, J.M.S., Dornellas, C.R.R., Schilling, M.T., et al: ‘Probing the new IEEE reliability test system (RTS-96): HL-II assessment’, IEEE Trans. Power Syst., 1998, 13, (1), pp. 171176.
    8. 8)
      • 27. Pereira, B.R., da Costa, G.R.M., Contreras, J., et al: ‘Optimal distributed generation and reactive power allocation in electrical distribution systems’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 975984.
    9. 9)
      • 36. Banerjee, B., Islam, S.M.: ‘Reliability based optimum location of distributed generation’, Int. J. Electr. Power Energy Syst., 2011, 33, (8), pp. 14701478.
    10. 10)
      • 11. Vatani, M., Alkaran, D.S., Sanjari, M.J., et al: ‘Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 6672.
    11. 11)
      • 6. Wang, C., Nehrir, M.H.: ‘Analytical approaches for optimal placement of distributed generation sources in power systems’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 20682076.
    12. 12)
      • 1. Renewables 2015 global status report. Available at http://www.ren21.net/, accessed January 1 2017.
    13. 13)
      • 53. Borle, M.S.D.L.J., Nayar, C.V.: ‘Development and testing of a 20 kW grid interactive photovoltaic power conditioning system in western Australia’, IEEE Trans. Ind. Appl., 1997, 33, (2), pp. 502508.
    14. 14)
      • 42. Akbari, M.-A., Aghaei, J., Barani, M.: ‘Convex probabilistic allocation of wind generation in smart distribution networks’, IET Renew. Power Gener., 2017, 11, (9), pp. 12111218.
    15. 15)
      • 40. Ochoa, L.F., Padilha-Feltrin, A., Harrison, G.P.: ‘Evaluating distributed time-varying generation through a multiobjective index’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 11321138.
    16. 16)
      • 47. Ruiz-Rodriguez, F., Hernandez, J., Jurado, F.: ‘Probabilistic load flow for photovoltaic distributed generation using the cornishfisher expansion’, Electr. Power Syst. Res., 2012, 89, pp. 129138, doi: http://dx.doi.org/10.1016/j.epsr.2012.03.009.
    17. 17)
      • 44. Chiradeja, P., Ramakumar, R.: ‘An approach to quantify the technical benefits of distributed generation’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 764773.
    18. 18)
      • 15. Khalesi, N., Rezaei, N., Haghifam, M.-R.: ‘DG allocation with application of dynamic programming for loss reduction and reliability improvement’, Int. J. Electr. Power Energy Syst., 2011, 33, (2), pp. 288295.
    19. 19)
      • 23. Jabr, R.A., Pal, B.: ‘Ordinal optimisation approach for locating and sizing of distributed generation’, IET Gener. Transm. Distrib., 2009, 3, (8), pp. 713723.
    20. 20)
      • 32. Pandi, V.R., Zeineldin, H., Xiao, W.: ‘Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12451254.
    21. 21)
      • 16. Vovos, P.N., Bialek, J.W.: ‘Direct incorporation of fault level constraints in optimal power flow as a tool for network capacity analysis’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 21252134.
    22. 22)
      • 14. AlHajri, M., AlRashidi, M., El-Hawary, M.: ‘Improved sequential quadratic programming approach for optimal distribution generation deployments via stability and sensitivity analyses’, Electr. Power Compon. Syst., 2010, 38, (14), pp. 15951614.
    23. 23)
      • 8. Gozel, T., Hocaoglu, M.H.: ‘An analytical method for the sizing and siting of distributed generators in radial systems’, Electr. Power Syst. Res., 2009, 79, (6), pp. 912918.
    24. 24)
      • 30. Ali, E., Elazim, S.A., Abdelaziz, A.: ‘Ant lion optimization algorithm for renewable distributed generations’, Energy, 2016, 116, pp. 445458.
    25. 25)
      • 22. Al Abri, R., El-Saadany, E.F., Atwa, Y.M.: ‘Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 326334.
    26. 26)
      • 48. Ruiz-Rodriguez, F., Hernandez, J., Jurado, F.: ‘Voltage unbalance assessment in secondary radial distribution networks with single-phase photovoltaic systems’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 646654, doi: http://dx.doi.org/10.1016/j.ijepes.2014.07.071.
    27. 27)
      • 54. Dent, C.J., Ochoa, L.F., Harrison, G.P., et al: ‘Efficient secure AC OPF for network generation capacity assessment’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 575583.
    28. 28)
      • 58. McCarl, B.A., Meeraus, A., van der Eijk, P., et al: ‘Mccarl GAMS user guide’ (2014), Available at http://www.gams.com, accessed January 1 2017.
    29. 29)
      • 9. Lee, S.-H., Park, J.-W.: ‘Selection of optimal location and size of multiple distributed generations by using Kalman filter algorithm’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 13931400.
    30. 30)
      • 51. Niknam, T., Zare, M., Aghaei, J.: ‘Scenario-based multiobjective volt/var control in distribution networks including renewable energy sources’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 20042019.
    31. 31)
      • 39. Porkar, S., Poure, P., Abbaspour-Tehrani-fard, A., et al: ‘Optimal allocation of distributed generation using a two-stage multi-objective mixed-integer-nonlinear programming’, Eur. Trans. Electr. Power, 2011, 21, (1), pp. 10721087.
    32. 32)
      • 38. Ochoa, L.F., Padilha-Feltrin, A., Harrison, G.P.: ‘Time-series-based maximization of distributed wind power generation integration’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 968974.
    33. 33)
      • 33. Wang, L., Singh, C.: ‘Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm’, IEEE Trans. Syst. Man Cybern. C, 2008, 38, (6), pp. 757764.
    34. 34)
      • 21. Atwa, Y., El-Saadany, E., Salama, M., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 36037.
    35. 35)
      • 41. Akbari, M.A., Aghaei, J., Barani, M., et al: ‘New metrics for evaluating technical benefits and risks of DGs increasing penetration’, IEEE Trans. Smart Grid, 2017, PP, (9), p. 1.
    36. 36)
      • 37. Hung, D.Q., Mithulananthan, N., Lee, K.Y.: ‘Determining PV penetration for distribution systems with time-varying load models’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 30483057.
    37. 37)
      • 7. Costa, P.M., Matos, M.A.: ‘Avoided losses on LV networks as a result of microgeneration’, Electr. Power Syst. Res., 2009, 79, (4), pp. 629634.
    38. 38)
      • 4. Eftekharnejad, S., Vittal, V., Heydt, G. T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    39. 39)
      • 55. Braun, M.: ‘Reactive power supplied by PV inverters – cost-benefit analysis’. 22nd European Photovoltaic Solar Energy Conf. and Exhibition, Milan, Italy, Sep 2007, vol. 33, no. 2, pp. 502508.
    40. 40)
      • 2. Masson, M.L.G., Biancardi, D.: ‘Global market outlook for photovoltaics until 2016’. Available at http://www.epia.org/news/.
    41. 41)
      • 29. Nayanatara, C., Baskaran, J., Kothari, D.: ‘Hybrid optimization implemented for distributed generation parameters in a power system network’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 690699.
    42. 42)
      • 3. Zhang, S.: ‘Analysis of DSPV (distributed solar PV) power policy in China’, Energy, 2016, 98, pp. 92100.
    43. 43)
      • 25. El-Ela, A.A., Allam, S.M., Shatla, M.: ‘Maximal optimal benefits of distributed generation using genetic algorithms’, Electr. Power Syst. Res., 2010, 80, (7), pp. 869877.
    44. 44)
      • 10. Hung, D.Q., Mithulananthan, N.: ‘Multiple distributed generator placement in primary distribution networks for loss reduction’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 17001708.
    45. 45)
      • 28. Novoa, C., Jin, T.: ‘Reliability centered planning for distributed generation considering wind power volatility’, Electr. Power Syst. Res., 2011, 81, (8), pp. 16541661.
    46. 46)
      • 24. Singh, D., Misra, R.: ‘Effect of load models in distributed generation planning’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22042212.
    47. 47)
      • 13. Keane, A., O'Malley, M.: ‘Optimal allocation of embedded generation on distribution networks’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 16401646.
    48. 48)
      • 52. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    49. 49)
      • 17. Esmaili, M.: ‘Placement of minimum distributed generation units observing power losses and voltage stability with network constraints’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 813821.
    50. 50)
      • 31. Muttaqi, K., Le, A.D., Aghaei, J., et al: ‘Optimizing distributed generation parameters through economic feasibility assessment’, Appl. Energy, 2016, 165, pp. 893903.
    51. 51)
      • 18. Ochoa, L.F., Dent, C.J., Harrison, G.P.: ‘Distribution network capacity assessment: variable DG and active networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 8795.
    52. 52)
      • 20. Atwa, Y.M., El-Saadany, E.F.: ‘Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems’, IET Renew. Power Gener., 2011, 5, (1), pp. 7988.
    53. 53)
      • 56. Madani, R., Sojoudi, S., Lavaei, J.: ‘Convex relaxation for optimal power flow problem: mesh networks’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 199211. doi: 10.1109/TPWRS.2014.2322051.
    54. 54)
      • 57. Roman, C., Rosehart, W.: ‘Evenly distributed Pareto points in multi-objective optimal power OW’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 10111012.
    55. 55)
      • 26. Kim, I.: ‘Optimal distributed generation allocation for reactive power control’, IET Gener. Trans. Distrib., 2017, 11, (6), pp. 15491556.
    56. 56)
      • 34. Abu-Mouti, F.S., El-Hawary, M.: ‘Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 20902101.
    57. 57)
      • 46. Liew, S.N., Strbac, G.: ‘Maximising penetration of wind generation in existing distribution networks’, IEE Proc., Gene Transm. Distrib., 2002, 149, (3), pp. 256262.
    58. 58)
      • 45. Ghanegaonkar, S.P., Pande, V.N.: ‘Optimal hourly scheduling of distributed generation and capacitors for minimisation of energy loss and reduction in capacitors switching operations’, IET Gener. Transm. Distrib., 2017, 11, (9), pp. 22442250.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0335
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0335
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading