access icon free Power-current controller based sliding mode control for DFIG-wind energy conversion system

This study presents an overall sliding mode control scheme for stator power-current control, grid power-current control and dc-link voltage regulation to operate a doubly-fed induction generator (DFIG) based wind energy conversion system. At the generator rotor side, the stator power control is achieved through controlling the rotor currents. The rotor current state model is carried out from the stator and the rotor equations of the generator under the condition of stator voltage alignment. At the grid side, a cascade control loop is applied for the dc-link voltage regulation and the power transfer using grid and dc-link modelling. The structure of the sliding mode control law, combination of compensating, sliding and integral terms, enhances the tracking performance and the robustness to uncertainties. The proposed control strategy is validated using an experimental DFIG wind turbine system and the results are provided to demonstrate the capabilities of the proposed control system in tracking and control under different operating conditions and robustness to uncertainties.

Inspec keywords: rotors; stators; electric current control; variable structure systems; robust control; asynchronous generators; wind power plants; power generation control; cascade control; voltage control; power control; wind turbines; power grids

Other keywords: cascade control loop; stator voltage alignment; doubly-fed induction generator based wind energy conversion system; dc-link voltage regulation; experimental DFIG wind turbine system; sliding mode control law structure; operating conditions; DFIG-wind energy conversion system; rotor current control; grid power-current control; dc-link modelling; power transfer; stator power-current control; robustness-to-uncertainties; overall sliding mode control scheme; grid side; rotor current state model; power-current controller based sliding mode control

Subjects: Wind power plants; Asynchronous machines; Stability in control theory; Control of electric power systems; Multivariable control systems; Voltage control; Power and energy control; Current control

References

    1. 1)
      • 7. Cárdenas, R., Peña, R., Alepuz, S., et al: ‘Overview of control systems for the operation of DFIGs in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 27762798.
    2. 2)
      • 12. Ginoya, D., Shendge, P.D., Phadke, S.B.: ‘Sliding mode control for mismatched uncertain systems using an extended disturbance observer’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 19831992.
    3. 3)
      • 6. Kaloi, G.S., Wanga, J., Hu, M.: ‘Active and reactive power control of the doubly fed induction generator based on wind energy conversion system’, Energy Rep., 2016, 2, pp. 194200.
    4. 4)
      • 18. Martinez, M.I., Susperregui, A., Tapia, G., et al: ‘Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages’, IET Renew. Power Gener., 2013, 7, (4), pp. 370379.
    5. 5)
      • 9. Pisano, A., Usai, E.: ‘Sliding mode control: A survey with applications in math’, Math. Comput. Simul., 2011, 81, (5), pp. 954979.
    6. 6)
      • 1. Polinder, H., Ferreira, J.A., Jensen, B.B., et al: ‘Trends in wind turbine generator systems’, IEEE Trans. Emerg. Sel. Top. Power Electron., 2013, 1, (3), pp. 174185.
    7. 7)
      • 27. Abdelbaset, A., Abou-Hashema, M.E., Abozeid, A.H.: ‘Grid synchronisation enhancement of a wind driven DFIG using adaptive sliding mode control’, IET Renew. Power Gener., 2017, 11, (5), pp. 688695.
    8. 8)
      • 17. Barambones, O.: ‘Sliding mode control strategy for wind turbine power maximization’, Energies, 2012, 5, pp. 23102330.
    9. 9)
      • 30. Merabet, A., Ahmed, K., Ibrahim, H., et al: ‘Energy management and control system for laboratory scale microgrid based wind-PV-battery’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 145154.
    10. 10)
      • 15. Valenciaga, F., Fernandez, R.D.: ‘Multiple-input–multiple-output high-order sliding mode control for a permanent magnet synchronous generator wind-based system with grid support capabilities’, IET Renew. Power Gener., 2015, 9, (8), pp. 925934.
    11. 11)
      • 19. Beltran, B., Benbouzid, M.E.-H., Ahmed-Ali, T.: ‘Second-order sliding mode control of a doubly fed induction generator driven wind turbine’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 261269.
    12. 12)
      • 29. Liu, X., Han, Y., Wang, C.: ‘Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine’, IET Renew. Power Gener., 2017, 11, (2), pp. 408418.
    13. 13)
      • 25. Liua, Y., Wangb, Z., Xiongc, L., et al: ‘DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed’, Electr. Power Energy Syst., 2018, 96, pp. 253260.
    14. 14)
      • 8. Poitiers, F., Bouaouiche, T., Machmoum, M.: ‘Advanced control of a doubly-fed induction generator for wind energy conversion’, Electr. Power Syst. Res., 2009, 79, pp. 10851096.
    15. 15)
      • 23. da Costa, J.P., Pinheiro, H., Degner, T., et al: ‘Robust controller for DFIGs of grid-connected wind turbines’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 40234038.
    16. 16)
      • 10. Derbel, N., Ghommam, J., Zhu, Q.: ‘Applications of sliding mode control’ (Springer, Singapore, 2016).
    17. 17)
      • 5. Kerrouchea, K., Mezouarb, A., Belgacem, K.: ‘Decoupled control of doubly fed induction generator by vector control for wind energy conversion system’, Energy Procedia, 2013, 42, pp. 239248.
    18. 18)
      • 16. Hu, J., Nian, H., Hu, B., et al: ‘Direct active and reactive power regulation of DFIG using sliding-mode control approach’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 10281039.
    19. 19)
      • 31. IEEE recommended practice and requirements for harmonic control in electric power systems, 2014, p. 519.
    20. 20)
      • 24. Yanga, B., Yub, T., Shua, H., et al: ‘Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers’, Appl. Energy, 2018, 210, pp. 711723.
    21. 21)
      • 13. Merabet, A., Ahmed, K.T., Ibrahim, H., et al: ‘Implementation of sliding mode control system for generator and grid sides control of wind energy conversion system’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 13271335.
    22. 22)
      • 21. Susperregui1, A., Martinez, M.I., Tapia, G., et al: ‘Second-order sliding-mode controller design and tuning for grid synchronisation and power control of a wind turbine-driven doubly fed induction generator’, IET Renew. Power Gener., 2013, 7, (5), pp. 540551.
    23. 23)
      • 3. Garcia-Sanz, M., Houpis, C.H.: ‘Wind energy systems: control engineering design’ (CRC Press, Boca Raton, FL, USA, 2012).
    24. 24)
      • 11. Errami, Y., Ouassaid, M., Cherkaoui, M., et al: ‘Sliding mode control scheme of variable speed wind energy conversion system based on the PMSG for utility network connection’, in Azar, A.T., Zhu, Q. (Eds.): ‘Advances and applications in sliding mode control systems’ (Springer-Verlag, Germany, 2015), vol. 576, pp. 167200.
    25. 25)
      • 22. Tohidi, A., Hajieghrary, H., Hsieh, M.A.: ‘Adaptive disturbance rejection control scheme for DFIG-based wind turbine: theory and experiments’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 20062015.
    26. 26)
      • 26. Djoudi, A., Bacha, S., Iman-Eini, H., et al: ‘Sliding mode control of DFIG powers in the case of unknown flux and rotor currents with reduced switching frequency’, Electr. Power Energy Syst., 2018, 96, pp. 347356.
    27. 27)
      • 4. Tanvir, A.A, Merabet, A., Beguenane, R.: ‘Real-time control of active and reactive power for doubly fed induction generator (DFIG)-based wind energy conversion system’, Energies, 2015, 8, (9), pp. 1038910408.
    28. 28)
      • 20. Evangelista, C., Valenciaga, F., Puleston, P.: ‘Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 682689.
    29. 29)
      • 14. Mozayan, S.M., Saad, M., Vahedi, H., et al: ‘Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 61486159.
    30. 30)
      • 28. Martinez, M.I., Susperregui, A., Tapia, G.: ‘Second-order sliding-mode-based global control scheme for wind turbine-driven DFIGs subject to unbalanced and distorted grid voltage’, IET Electr. Power Appl., 2017, 11, (6), pp. 10131022.
    31. 31)
      • 2. Munteanu, I., Bratcu, A.I., Cutululis, N.-A., et al: ‘Optimal control of wind energy systems’ (Springer-Verlag, London, UK, 2007).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0313
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading