Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Stochastic multi-objective framework for optimal dynamic planning of interconnected microgrids

This paper proposes a new stochastic multi-objective framework for optimal dynamic planning of interconnected microgrids (MGs) under uncertainty from economic, technical, reliability and environmental viewpoints. In the proposed approach, optimal site, size, type, and time of distributed energy resources are determined along with optimal allocation of section switches to partitioning conventional distribution system into a number of interconnected MGs. The uncertainties of the problem are considered using scenario modelling and backward scenario reduction technique is implemented to deal with computational burden. In addition, three different risk averse, risk neutral and risk seeker strategies are defined for distribution network operator. The proposed framework is considered as two unparalleled objective functions which the first objective minimizes the investment cost, operation and maintenance cost, power loss cost and pollutants emission cost and the second objective is defined to minimize energy not supplied in both connected and islanded modes of MGs. Finally, multi objective particle swarm optimization is applied to minimize the proposed bi-objective functions and subsequently fuzzy satisfying method is accomplished to select the best solution proportional to risk based strategies. Efficiency of the proposed framework is validated on 85-bus distribution system and obtained results are presented and discussed.

References

    1. 1)
      • 9. Khodaei, A., Shahidehpour, M.: ‘Microgrid-based co-optimization of generation and transmission planning in power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15821590.
    2. 2)
      • 21. Shen, X., Shahidehpour, M., Zhu, S., et al: ‘Multi-stage planning of active distribution networks considering the Co-optimization of operation strategies’, IEEE Trans. Smart Grid., 2016, 1, (99), pp. 110.
    3. 3)
      • 7. Nekooei, K., Farsangi, M., Pour, N.H., et al: ‘An improved multi-objective harmony search for optimal placement of DGs in distribution systems’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 557567.
    4. 4)
      • 37. Ameli, A., Bahrami, S., Khazaeli, F., et al: ‘A multi objective particle swarm optimization for sizing and placement of DGs from DG owner's and distribution company's viewpoints’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 18311840.
    5. 5)
      • 23. Aien, M., Hajebrahimi, A., Fotuhi-Firuzabad, M.: ‘A comprehensive review on uncertainty modeling techniques in power system studies’, Renew. Sustain. Energy Rev., 2016, 57, (3), pp. 10771089.
    6. 6)
      • 26. Vos, K.D., Driesen, J.: ‘Active participation of wind power in operating reserves’, IET Renew. Power Gener., 2015, 9, (6), pp. 566575.
    7. 7)
      • 30. Bahramirad, S., Reder, W., Khodaei, A.: ‘Reliability-constrained optimal sizing of energy storage system in a microgrid’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20562062.
    8. 8)
      • 31. Abapour, S., Zare, K., Mohammadi-Ivatloo, B.: ‘Dynamic planning of distributed generation units in active distribution network’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 14551463.
    9. 9)
      • 16. Che, L., Zhang, X., Shahidehpour, M., et al: ‘Optimal interconnection planning of community microgrids with renewable energy sources’, IEEE Trans. Smart Grid, 2015, 4, (3), pp. 110.
    10. 10)
      • 35. Wang, S., Li, Z., Wu, L., et al: ‘New metrics for assessing the reliability and economics of microgrids in distribution systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28522861.
    11. 11)
      • 36. Ma, G., Xu, G., Chen, Y., et al: ‘Multi-objective optimal configuration method for a standalone wind-solar-battery hybrid power system’, IET Renew. Power Gener., 2017, 11, (1), pp. 194202.
    12. 12)
      • 15. Atwa, Y., El-Saadany, E., Salama, M., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
    13. 13)
      • 1. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
    14. 14)
      • 13. Guo, L., Liu, W., Cai, J., et al: ‘A two-stage optimal planning and design method combined cooling, heat and power microgrid system’, Energy Convers. Manage., 2013, 74, (3), pp. 433445.
    15. 15)
      • 34. Khalesi, N., Rezaei, N., Haghifam, M.R.: ‘DG allocation with application of dynamic programming for loss reduction and reliability improvement’, Int. J. Elect. Power Energy Syst., 2011, 33, (8), pp. 288295.
    16. 16)
      • 29. Korpaasa, M., Holena, A-T., Hildrum, R.: ‘Operation and sizing of energy storage for wind power plants in a market system’, Electr. Power Energy Syst., 2003, 25, pp. 599606.
    17. 17)
      • 3. Soroudi, A., Afrasiab, M.: ‘Binary PSO-based dynamic multi-objective model for distributed generation planning under uncertainty’, IET Renew. Power Gener., 2012, 6, (2), pp. 6778.
    18. 18)
      • 24. Cai, Y., Lin, J., Wan, C., et al: ‘Stochastic bi-level trading model for an active distribution company with DGs and interruptible loads’, IET Renew. Power Gener., 2017, 11, (2), pp. 278288.
    19. 19)
      • 28. Moradi, M.H., Eskandari, M., Hosseinian, S.M.: ‘Operational strategy optimization in an optimal sized smart microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 10871095.
    20. 20)
      • 12. Kalkhambkar, V., Kumar, R., Bhakar, R.: ‘Joint optimal allocation methodology for renewable distributed generation and energy storage for economic benefits’, IET Renew. Power Gener., 2016, 10, (9), pp. 14221429.
    21. 21)
      • 4. Arefifar, S.A., Mohamed, Y.A., El-Fouly, T.M.: ‘Supply adequacy-based optimal construction of microgrids in smart distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14911502.
    22. 22)
      • 2. Masaud, T.M., Nannapaneni, G., Challoo, R.: ‘Optimal placement and sizing of distributed generation-based wind energy considering optimal self VAR control’, IET Renew. Power Gener., 2017, 11, (3), pp. 281288.
    23. 23)
      • 33. Abido, M.A.: ‘Multi objective evolutionary algorithm for electric power dispatch problem’, IEEE Trans. Evol. Comput., 2006, 10, (3), pp. 315329.
    24. 24)
      • 14. Gu, W., Wu, Z., Bo, R., et al: ‘Modeling planning and optimal energy management of combined cooling, heating and power microgrid: a review’, Int. J. Electr. Power Energy Syst., 2014, 54, (2), pp. 2637.
    25. 25)
      • 32. Atwa, Y-M., El-Saadany, E.F.: ‘Optimal allocation of ESS in distribution systems with a high penetration of wind energy’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18151822.
    26. 26)
      • 20. Malekpour, A-R., Niknam, T., Pahwa, A., et al: ‘Multi-objective stochastic distribution feeder reconfiguration in systems with wind power generators and fuel cells using the point estimate method’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14831492.
    27. 27)
      • 22. Chowdhury, S., Chowdhury, S.P., Crossley, P.: ‘Microgrids and active distribution networks’ (IET, London, UK, 2009).
    28. 28)
      • 19. Jabr, R-A., Singh, R., Pal, B-C.: ‘Minimum loss network reconfiguration using mixed-integer convex programming’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 11061115.
    29. 29)
      • 18. Arefifar, S.A., Mohamed, Y.A.R., El-Fouly, T.H.M.: ‘Optimized multiple microgrid-based clustering of active distribution systems considering communication and control requirements’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 111.
    30. 30)
      • 17. Che, L., Zhang, X., Shahidehpour, M., et al: ‘Optimal planning of loop-based microgrid topology’, IEEE Trans. Smart Grid, 2015, 4, (3), pp. 110.
    31. 31)
      • 38. Shahidehpour, M., Yamin, H., Li, Z.: ‘Market operations in electric power systems: forecasting, scheduling, and risk Management’ (Wiley, New York, USA, 2002).
    32. 32)
      • 8. Arefifar, S.A., Mohamed, Y.I.: ‘DG mix, reactive sources and energy storage units for optimizing microgrid reliability and supply security’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18351844.
    33. 33)
      • 11. Arefifar, S.A., Mohamed, Y.A.I., El-Fouly, T.H.M.: ‘Optimum microgrid design for enhancing reliability and supply-security’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15671575.
    34. 34)
      • 6. Wang, Z., Chen, B., Wang, J., et al: ‘Robust optimization based optimal DG placement in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 21732182.
    35. 35)
      • 27. Aien, M., Fotuhi-Firuzabad, M., Aminifar, F.: ‘Probabilistic optimal power flow in correlated hybrid wind-photovoltaic power systems’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 934943.
    36. 36)
      • 5. Zhang, Y., Dong, Z.Y., Luo, F., et al: ‘Optimal allocation of battery energy storage systems in distribution networks with high wind power penetration’, IET Renew. Power Gener., 2016, 10, (8), pp. 11051113.
    37. 37)
      • 25. González, M.G., Rodriguez, F.J.R., Jurado, F.: ‘Metaheuristic and probabilistic techniques for optimal allocation and size of biomass distributed generation in unbalanced radial systems’, IET Renew. Power Gener., 2015, 9, (6), pp. 653659.
    38. 38)
      • 10. Guo, L., Liu, W., Jiao, B., et al: ‘Multi-objective stochastic optimal planning method for stand-alone microgrid system’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12631273.
    39. 39)
      • 39. Das, D., Kothari, D.P., Kalam, A.: ‘Simple and efficient method for load flow solution of radial distribution network’, Electr. Power Energy Syst., 1995, 17, (5), pp. 335346.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0278
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0278
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address