access icon free Evaluation index system for photovoltaic systems statistical characteristics under hazy weather conditions in central China

This study investigates different methods of determining the optimum tilt angle (OTA) for photovoltaic (PV) systems to maximise energy yield, and provides an evaluation index system for the static and dynamic performance of PV systems under hazy weather conditions, in view of the nature of solar energy resource and PV energy yield. Due to the fact that the data of total solar radiation on inclined surface in Wuhan is not available and PV power generation is non-linear process, an experimental off-grid PV system with various tilt angles and orientations is established which is located in Hubei Meteorological Administration in Wuhan. The experimental system is then used to analyse the accuracy of five in-plane solar radiation models and the relationship between the model predicted errors and meteorological environmental factors, explore the calculated and measured OTA of PV modules and evaluate the performance of PV system with different tilt angles and orientations based on static and dynamic indexes in real atmosphere condition. Finally, the influence of dust on PV energy production has been reported. After cleaning, the energy yield of PV models can increase by 10–20%.

Inspec keywords: photovoltaic power systems; statistical analysis; sunlight; solar power stations

Other keywords: evaluation index system; solar energy resource; Wuhan; Hubei Meteorological Administration; PV energy production; central China; OTA determination; PV energy; nonlinear process; hazy weather condition; meteorological environmental factor; in-plane solar radiation model; optimum tilt angle determination; photovoltaic system statistical characteristics; model predicted error; off-grid PV power generation system

Subjects: Solar power stations and photovoltaic power systems; Other topics in statistics

References

    1. 1)
      • 13. Reindl, D.T., Beckman, W.A., Duffie, J.A.: ‘Evaluation of hourly tilt surface radiation models’, Sol. Energy, 1990, 45, (1), pp. 917.
    2. 2)
      • 12. Klein, S., Theilacker, J.: ‘An algorithm for calculating monthly-average radiation on inclined surfaces’, J. Sol. Energy Eng., 1981, 103, (1), pp. 2933.
    3. 3)
      • 15. Duffie, J.A., Beckman, W.A., Mcgowan, J.: ‘Solar engineering of thermal processes’ (John Wiley & Sons, 2013).
    4. 4)
      • 14. Perez, R., Ineichen, P., Seals, R., et al: ‘Modeling daylight availability and irradiance components from direct and global irradiance’, Sol. Energy, 1990, 44, (5), pp. 271289.
    5. 5)
      • 22. Journée, M., Bertrand, C.: ‘Quality control of solar radiation data within the RMIB solar measurements network’, Sol. Energy, 2011, 85, (1), pp. 7286.
    6. 6)
      • 16. Yang, H.X., Lin, L.: ‘The optimal tilt angles and orientations of PV claddings for building-integrated photovoltaic (BIPV) applications’, J. Sol. Energy Eng., 2007, 129, (2), pp. 253255.
    7. 7)
      • 1. Renewable energy statistics 2016’. Available at www.irena.org/Publications, accessed 4 December 2016.
    8. 8)
      • 17. Elminir, H.K., Ghitas, A.E., El-Hussainy, F., et al: ‘Optimal solar flat-plate collector slope: case study for Helwan, Egypt’, Energy Convers. Manage., 2006, 47, (5), pp. 624637.
    9. 9)
      • 2. Global market outlook for solar power 2016–2020’. Available at https://www.statista.com/study/36281/global-solar-power-market-outlook-through-2020/, Solar Power Europe Report July 2016, accessed 23 June 2016.
    10. 10)
      • 23. Li, F., Ma, N., Zhao, J., et al: ‘Evaluating optimum tilt angle for PV modules using solar radiation models in Wuhan, China’. Proc. Ninth Int. Conf. Power Electronics (ICPE 2015 – ECCE Asia), Seoul, Korea, 2015, pp. 25072512.
    11. 11)
      • 18. Khoo, Y.S., Nobre, A., Malhotra, R., et al: ‘Optimal orientation and tilt angle for maximizing in-plane solar irradiation for PV applications in Singapore’, IEEE J. Photovolt., 2014, 4, (2), pp. 647653.
    12. 12)
      • 27. Cao, G., Kim, H.: ‘A novel analog maximum power point tracker for low-cost and low-power distributed PV systems’, IEEJ Trans. Electr. Electron. Eng., 2015, 10, (4), pp. 474478.
    13. 13)
      • 5. Stanciu, C., Stanciu, D.: ‘Optimal tilt angle for flat plate collectors all over the world – a declination dependence formula and comparisons of three solar radiation models’, Energy Convers. Manage., 2014, 81, (2), pp. 133143.
    14. 14)
      • 7. Li, H., Eseye, A.T., Zhang, J., et al: ‘Optimal energy management for industrial microgrids with high-penetration renewables’, Prot. Control Mod. Power Syst., 2017, 2, (1), pp. 114.
    15. 15)
      • 9. Benjamin, Y.H., Jordan, C.: ‘The interrelationship and characteristics and distribution of direct, diffuse, and total solar radiation’, Sol. Energy, 1960, 4, (3), pp. 119.
    16. 16)
      • 26. Qing, S., Shi, G., Chen, L., et al: ‘Long-term variation of aerosol optical depth in China based on meteorological horizontal visibility observations’, Chin. J. Atmos. Sci. (in Chinese), 2010, 34, (2), pp. 449456.
    17. 17)
      • 25. Wu, D.: ‘Hazy weather research in China in the last decade: a review’, Acta Scientiae Circumstantiae, 2012, 32, (2), pp. 257269.
    18. 18)
      • 21. Vasilis, F., Rolf, F., Marco, R., et al: ‘Methodology guidelines on life-cycle assessment of photovoltaic electricity 3rd edition’. IEA PVPS Task 12, Report IEA-PVPS T12-08, 2016.
    19. 19)
      • 10. Klucher, T.M.: ‘Evaluation of models to predict insolation on tilt surfaces’, Sol. Energy, 1979, 23, (2), pp. 111114.
    20. 20)
      • 11. Hay, J.E.: ‘Calculation of monthly mean solar radiation for horizontal and inclined surface’, Sol. Energy, 1979, 23, (4), pp. 301307.
    21. 21)
      • 28. Şenpinar, A., Cebeci, M.: ‘Evaluation of power output for fixed and two-axis tracking PV arrays’, Appl. Energy, 2012, 92, (2), pp. 677685.
    22. 22)
      • 19. Decker, B., Jahn, U.: ‘Performance of 170 grid connected PV plants in northern Germany-analysis of yields and optimization potentials’, Sol. Energy, 1997, 59, (4), pp. 127133.
    23. 23)
      • 4. Seme, S., Štumberger, G., Voršič, J.: ‘Maximum efficiency trajectories of a two-axis sun tracking system determined considering tracking system consumption’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12801290.
    24. 24)
      • 3. Kornelakis, A., Koutroulis, E.: ‘Methodology for the design optimisation and the economic analysis of grid-connected photovoltaic systems’, IET Renew. Power Gener., 2009, 3, (4), pp. 476492.
    25. 25)
      • 24. Li, F., Yan, Q., Duan, S., et al: ‘A novel model for daily energy production estimation of grid-connected PV system’, J. Sol. Energy Eng., 2015, 137, (3), pp. 03101310310138.
    26. 26)
      • 8. Shariah, A., Al-Akhras, M.A., Al-Omari, I.A.: ‘Optimizing the tilt angle of solar collectors’, Renew. Energy, 2002, 26, (4), pp. 587598.
    27. 27)
      • 6. Çinar, S.M., Hocaoğlu, F.O., Orhun, M.: ‘A remotely accessible solar tracker system design’, J. Renew. Sustain. Energy, 2014, 6, (3), pp. 278287.
    28. 28)
      • 20. International Standard IEC 61724: Photovoltaic system performance monitoring – Guidelines for measurements, data exchange and analysis. Geneva, Switzerland, 1998.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0259
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0259
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading