http://iet.metastore.ingenta.com
1887

Design methodology of a passive damped modified LCL filter for leakage current reduction in grid-connected transformerless three-phase PV inverters

Design methodology of a passive damped modified LCL filter for leakage current reduction in grid-connected transformerless three-phase PV inverters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although grid-connected transformerless photovoltaic (PV) inverters present higher efficiency and power density compared with inverters with a transformer, the leakage current caused by the inverter common-mode voltage introduces several problems. Among the techniques to reduce the leakage current, the modified LCL (MLCL) filter with passive damping is an effective and simple solution. However, the classical design of the filter damping resistance is not adequate for ensuring both proper leakage current attenuation and control system stability. Therefore, this study proposes a methodology to design the resistance in a low-loss passive damping structure applied to the MLCL filter. In addition to the conventional specifications for LCL-type filters, this study includes the leakage current limit in the design procedure. Simulation and experimental results for a 10 kW PV inverter show the damping resistance impact on the leakage current. The results related to the efficiency and grid inductance variation are also presented. Therefore, it is possible to conclude that the proposed design methodology is very useful for obtaining a damping resistance that ensures control system stability and a leakage current in conformity with PV standards.

References

    1. 1)
      • D. Barater , C. Lorenzani , G. Franceschini .
        1. Barater, D., Lorenzani, C., Franceschini, G., et al: ‘Recent advances in single-phase transformerless photovoltaic inverters’, IET Renew. Power Gener., 2016, 10, (2), pp. 260273.
        . IET Renew. Power Gener. , 2 , 260 - 273
    2. 2)
      • Y.W. Cho , W.J. Cha , J.M. Kwon .
        2. Cho, Y.W., Cha, W.J., Kwon, J.M., et al: ‘Improved single-phase transformerless inverter with high power density and high efficiency for grid-connected photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (2), pp. 166174.
        . IET Renew. Power Gener. , 2 , 166 - 174
    3. 3)
      • D. Debnath , K. Chatterjee .
        3. Debnath, D., Chatterjee, K.: ‘Maximising power yield in a transformerless single-phase grid connected inverter servicing two separate photovoltaic panels’, IET Renew. Power Gener., 2016, 10, (8), pp. 10871095.
        . IET Renew. Power Gener. , 8 , 1087 - 1095
    4. 4)
      • O. Lopez , F.D. Freijedo , A.G. Yepes .
        4. Lopez, O., Freijedo, F.D., Yepes, A.G., et al: ‘Eliminating ground current in a transformerless photovoltaic application’, IEEE Trans. Energy Conv., 2010, 25, (1), pp. 140147.
        . IEEE Trans. Energy Conv. , 1 , 140 - 147
    5. 5)
      • E. Gubía , P. Sanchis , A. Ursúa .
        5. Gubía, E., Sanchis, P., Ursúa, A., et al: ‘Ground currents in single-phase transformerless photovoltaic systems’, Prog. Photovolt., Res. Appl., 2007, 15, (7), pp. 629650.
        . Prog. Photovolt., Res. Appl. , 7 , 629 - 650
    6. 6)
      • R. Gonzalez , J. Lopez , P. Sanchis .
        6. Gonzalez, R., Lopez, J., Sanchis, P., et al: ‘Transformerless inverter for single-phase photovoltaic systems’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 693697.
        . IEEE Trans. Power Electron. , 2 , 693 - 697
    7. 7)
      • (2011)
        7. IEC 62109–2: ‘Safety for power converters for use in photovoltaic power systems – part 2’, 2011.
        .
    8. 8)
      • (2005)
        8. DIN VDE 0126–1–1: ‘Automatic disconnection device between a generator and the public low-voltage grid’, 2005.
        .
    9. 9)
      • M.C. Cavalcanti , K.C. Oliveira , A.M. Farias .
        9. Cavalcanti, M.C., Oliveira, K.C., Farias, A.M., et al: ‘Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 13601368.
        . IEEE Trans. Ind. Electron. , 4 , 1360 - 1368
    10. 10)
      • L. June-Seok , L. Kyo-Beum .
        10. June-Seok, L., Kyo-Beum, L.: ‘New modulation techniques for a leakage current reduction and a neutral-point voltage balance in transformerless photovoltaic systems using a three-level inverter’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17201732.
        . IEEE Trans. Power Electron. , 4 , 1720 - 1732
    11. 11)
      • M.C. Cavalcanti , A.M. Farias , K.C. Oliveira .
        11. Cavalcanti, M.C., Farias, A.M., Oliveira, K.C., et al: ‘Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 435443.
        . IEEE Trans. Ind. Electron. , 1 , 435 - 443
    12. 12)
      • L. Yen-Shin , C. Po-Sheng , L. Hsiang-Kuo .
        12. Yen-Shin, L., Po-Sheng, C., Hsiang-Kuo, L., et al: ‘Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects-part II: applications to IM drives with diode front end’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 16131620.
        . IEEE Trans. Ind. Appl. , 6 , 1613 - 1620
    13. 13)
      • Z. Chen , W. Yu , X. Ni .
        13. Chen, Z., Yu, W., Ni, X., et al: ‘A new modulation technique to reduce leakage current without compromising modulation index in PV systems’. Proc. IEEE ECCE, 2015, pp. 460465.
        . Proc. IEEE ECCE , 460 - 465
    14. 14)
      • T.K.S. Freddy , N.A. Rahim , W.P. Hew .
        14. Freddy, T.K.S., Rahim, N.A., Hew, W.P., et al: ‘Modulation techniques to reduce leakage current in three-phase transformerless H7 photovoltaic inverter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 322331.
        . IEEE Trans. Ind. Electron. , 1 , 322 - 331
    15. 15)
      • G. Vazquez , T. Kerekes , J. Rocabert .
        15. Vazquez, G., Kerekes, T., Rocabert, J., et al: ‘A photovoltaic three-phase topology to reduce common mode voltage’. Proc. IEEE ISIE, 2010, pp. 28852890.
        . Proc. IEEE ISIE , 2885 - 2890
    16. 16)
      • X. Guo , D. Xu , B. Wu .
        16. Guo, X., Xu, D., Wu, B.: ‘New control strategy for DCM-232 three-phase PV inverter with constant common mode voltage and anti-islanding capability’. Proc. IEEE ECCE, 2014, pp. 56135617.
        . Proc. IEEE ECCE , 5613 - 5617
    17. 17)
      • X. Guo , D. Xu , B. Wu .
        17. Guo, X., Xu, D., Wu, B.: ‘Three-phase DC-bypass topologies with reduced leakage current for transformerless PV systems’. Proc. IEEE ECCE, 2015, pp. 4346.
        . Proc. IEEE ECCE , 43 - 46
    18. 18)
      • T. Kerekes , R. Teodorescu , P. Rodríguez .
        18. Kerekes, T., Teodorescu, R., Rodríguez, P., et al: ‘A new high-efficiency single-phase transformerless PV inverter topology’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 184191.
        . IEEE Trans. Ind. Electron. , 1 , 184 - 191
    19. 19)
      • T. Kerekes , R. Teodorescu , M. Liserre .
        19. Kerekes, T., Teodorescu, R., Liserre, M.: ‘Common mode voltage in case of transformerless PV inverters connected to the grid’, Proc. IEEE ISIE, 2008, pp. 23902395.
        . Proc. IEEE ISIE , 2390 - 2395
    20. 20)
      • T. Kerekes , R. Teodorescu , M. Liserre .
        20. Kerekes, T., Teodorescu, R., Liserre, M., et al: ‘Evaluation of three-phase transformerless photovoltaic inverter topologies’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 22022211.
        . IEEE Trans. Power Electron. , 9 , 2202 - 2211
    21. 21)
      • D. Dong , L. Fang , D. Boroyevich .
        21. Dong, D., Fang, L., Boroyevich, D., et al: ‘Leakage current reduction in a single-phase bidirectional ac-dc full-bridge inverter’, IEEE Trans. Power Electron., 2012, 27, (10), pp. 42814291.
        . IEEE Trans. Power Electron. , 10 , 4281 - 4291
    22. 22)
      • D.A. Rendusara , P.N. Enjeti .
        22. Rendusara, D.A., Enjeti, P.N.: ‘An improved inverter output filter configuration reduces common and differential modes dv/dt at the motor terminals in PWM drive systems’, IEEE Trans. Power Electron., 1998, 13, (6), pp. 11351143.
        . IEEE Trans. Power Electron. , 6 , 1135 - 1143
    23. 23)
      • J.C. Giacomini , L. Michels , L. Schuch .
        23. Giacomini, J.C., Michels, L., Schuch, L., et al: ‘Design of a LCL filter for leakage current reduction in transformerless PV grid-connected three-level inverter’. Proc. IEEE APEC, 2015, pp. 239245.
        . Proc. IEEE APEC , 239 - 245
    24. 24)
      • D. Dong , F. Luo , X. Zhang .
        24. Dong, D., Luo, F., Zhang, X., et al: ‘Grid-interface bidirectional converter for residential dc distribution systems—part 2: ac and dc interface design with passive components minimization’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 16671679.
        . IEEE Trans. Power Electron. , 4 , 1667 - 1679
    25. 25)
      • W. Wu , Y. He , T. Tang .
        25. Wu, W., He, Y., Tang, T., et al: ‘A new design method for the passive damped LCL and LLCL filter-based single-phase grid-tied inverter’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 43394350.
        . IEEE Trans. Ind. Electron. , 10 , 4339 - 4350
    26. 26)
      • P. Channegowda , V. John .
        26. Channegowda, P., John, V.: ‘Filter optimization for grid interactive voltage source inverters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41064114.
        . IEEE Trans. Ind. Electron. , 12 , 4106 - 4114
    27. 27)
      • Z. Ye , Y. Xu , X. Wu .
        27. Ye, Z., Xu, Y., Wu, X., et al: ‘A simplified PWM strategy for a neutral-point-clamped (NPC) three-level converter with unbalanced dc links’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 32273238.
        . IEEE Trans. Power Electron. , 4 , 3227 - 3238
    28. 28)
      • A. Choudhury , P. Pillay , S.S. Williamson .
        28. Choudhury, A., Pillay, P., Williamson, S.S.: ‘Performance comparison study of space-vector and modified-carrier-based PWM techniques for a three-level neutral-point-clamped traction inverter drive’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (3), pp. 10641076.
        . IEEE J. Emerg. Sel. Top. Power Electron. , 3 , 1064 - 1076
    29. 29)
      • R.N. Beres , W. Xiongfei , F. Blaabjerg .
        29. Beres, R.N., Xiongfei, W., Blaabjerg, F., et al: ‘Optimal design of high-order passive-damped filters for grid-connected applications’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 20832098.
        . IEEE Trans. Power Electron. , 3 , 2083 - 2098
    30. 30)
      • J. Yang , F.C. Lee .
        30. Yang, J., Lee, F.C.: ‘LCL filter design and inductor current ripple analysis for a three-level NPC grid interface converter’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46594668.
        . IEEE Trans. Power Electron. , 9 , 4659 - 4668
    31. 31)
      • M. Liserre , F. Blaabjerg , S. Hansen .
        31. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291.
        . IEEE Trans. Ind. Appl. , 5 , 1281 - 1291
    32. 32)
      • R. Kangle , Z. Xing , W. Fusheng .
        32. Kangle, R., Xing, Z., Fusheng, W., et al: ‘Optimized design of filter for transformerless three-level photovoltaic grid-connected inverter’. Proc. IEEE TENCON, 2013, pp. 15.
        . Proc. IEEE TENCON , 1 - 5
    33. 33)
      • L. Michels , R.F. Camargo , F. Botteron .
        33. Michels, L., Camargo, R.F., Botteron, F., et al: ‘Generalised design methodology of second-order filters for voltage-source inverters with space-vector modulation’, IEE Proc. Electr. Power Appl., 2006, 153, (2), pp. 219226.
        . IEE Proc. Electr. Power Appl. , 2 , 219 - 226
    34. 34)
      • J.M.A. Myrzik , M. Calais .
        34. Myrzik, J.M.A., Calais, M.: ‘String and module integrated inverters for single-phase grid connected photovoltaic systems - a review’. Proc. IEEE PowerTech, 2003, p. 8.
        . Proc. IEEE PowerTech , 8
    35. 35)
      • R. Teodorescu , M. Liserre , P. Rodríguez . (2011)
        35. Teodorescu, R., Liserre, M., Rodríguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (John Wiley-IEEE, 2011).
        .
    36. 36)
      • J.M. Espi , J. Castello , R. García-Gil .
        36. Espi, J.M., Castello, J., García-Gil, R., et al: ‘An adaptive robust predictive current control for three-phase grid-connected inverters’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 35373546.
        . IEEE Trans. Ind. Electron. , 8 , 3537 - 3546
    37. 37)
      • K. Ogata . (1995)
        37. Ogata, K.: ‘Discrete time control systems’ (Prentice-Hall, 1995).
        .
    38. 38)
      • J. Dannehl , C. Wessels , F.W. Fuchs .
        38. Dannehl, J., Wessels, C., Fuchs, F.W.: ‘Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 380388.
        . IEEE Trans. Ind. Electron. , 2 , 380 - 388
    39. 39)
      • L.A. Maccari , C.L.A. Santini , H. Pinheiro .
        39. Maccari, L.A., Santini, C.L.A., Pinheiro, H., et al: ‘Robust optimal current control for grid-connected three-phase pulse-width modulated converters’, IET Power Electron., 2015, 8, (8), pp. 14901499.
        . IET Power Electron. , 8 , 1490 - 1499
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0256
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address