Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design methodology of a passive damped modified LCL filter for leakage current reduction in grid-connected transformerless three-phase PV inverters

Although grid-connected transformerless photovoltaic (PV) inverters present higher efficiency and power density compared with inverters with a transformer, the leakage current caused by the inverter common-mode voltage introduces several problems. Among the techniques to reduce the leakage current, the modified LCL (MLCL) filter with passive damping is an effective and simple solution. However, the classical design of the filter damping resistance is not adequate for ensuring both proper leakage current attenuation and control system stability. Therefore, this study proposes a methodology to design the resistance in a low-loss passive damping structure applied to the MLCL filter. In addition to the conventional specifications for LCL-type filters, this study includes the leakage current limit in the design procedure. Simulation and experimental results for a 10 kW PV inverter show the damping resistance impact on the leakage current. The results related to the efficiency and grid inductance variation are also presented. Therefore, it is possible to conclude that the proposed design methodology is very useful for obtaining a damping resistance that ensures control system stability and a leakage current in conformity with PV standards.

References

    1. 1)
      • 22. Rendusara, D.A., Enjeti, P.N.: ‘An improved inverter output filter configuration reduces common and differential modes dv/dt at the motor terminals in PWM drive systems’, IEEE Trans. Power Electron., 1998, 13, (6), pp. 11351143.
    2. 2)
      • 20. Kerekes, T., Teodorescu, R., Liserre, M., et al: ‘Evaluation of three-phase transformerless photovoltaic inverter topologies’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 22022211.
    3. 3)
      • 17. Guo, X., Xu, D., Wu, B.: ‘Three-phase DC-bypass topologies with reduced leakage current for transformerless PV systems’. Proc. IEEE ECCE, 2015, pp. 4346.
    4. 4)
      • 25. Wu, W., He, Y., Tang, T., et al: ‘A new design method for the passive damped LCL and LLCL filter-based single-phase grid-tied inverter’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 43394350.
    5. 5)
      • 9. Cavalcanti, M.C., Oliveira, K.C., Farias, A.M., et al: ‘Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 13601368.
    6. 6)
      • 10. June-Seok, L., Kyo-Beum, L.: ‘New modulation techniques for a leakage current reduction and a neutral-point voltage balance in transformerless photovoltaic systems using a three-level inverter’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17201732.
    7. 7)
      • 23. Giacomini, J.C., Michels, L., Schuch, L., et al: ‘Design of a LCL filter for leakage current reduction in transformerless PV grid-connected three-level inverter’. Proc. IEEE APEC, 2015, pp. 239245.
    8. 8)
      • 2. Cho, Y.W., Cha, W.J., Kwon, J.M., et al: ‘Improved single-phase transformerless inverter with high power density and high efficiency for grid-connected photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (2), pp. 166174.
    9. 9)
      • 11. Cavalcanti, M.C., Farias, A.M., Oliveira, K.C., et al: ‘Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 435443.
    10. 10)
      • 19. Kerekes, T., Teodorescu, R., Liserre, M.: ‘Common mode voltage in case of transformerless PV inverters connected to the grid’, Proc. IEEE ISIE, 2008, pp. 23902395.
    11. 11)
      • 38. Dannehl, J., Wessels, C., Fuchs, F.W.: ‘Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 380388.
    12. 12)
      • 31. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291.
    13. 13)
      • 21. Dong, D., Fang, L., Boroyevich, D., et al: ‘Leakage current reduction in a single-phase bidirectional ac-dc full-bridge inverter’, IEEE Trans. Power Electron., 2012, 27, (10), pp. 42814291.
    14. 14)
      • 1. Barater, D., Lorenzani, C., Franceschini, G., et al: ‘Recent advances in single-phase transformerless photovoltaic inverters’, IET Renew. Power Gener., 2016, 10, (2), pp. 260273.
    15. 15)
      • 14. Freddy, T.K.S., Rahim, N.A., Hew, W.P., et al: ‘Modulation techniques to reduce leakage current in three-phase transformerless H7 photovoltaic inverter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 322331.
    16. 16)
      • 7. IEC 62109–2: ‘Safety for power converters for use in photovoltaic power systems – part 2’, 2011.
    17. 17)
      • 37. Ogata, K.: ‘Discrete time control systems’ (Prentice-Hall, 1995).
    18. 18)
      • 33. Michels, L., Camargo, R.F., Botteron, F., et al: ‘Generalised design methodology of second-order filters for voltage-source inverters with space-vector modulation’, IEE Proc. Electr. Power Appl., 2006, 153, (2), pp. 219226.
    19. 19)
      • 35. Teodorescu, R., Liserre, M., Rodríguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (John Wiley-IEEE, 2011).
    20. 20)
      • 13. Chen, Z., Yu, W., Ni, X., et al: ‘A new modulation technique to reduce leakage current without compromising modulation index in PV systems’. Proc. IEEE ECCE, 2015, pp. 460465.
    21. 21)
      • 16. Guo, X., Xu, D., Wu, B.: ‘New control strategy for DCM-232 three-phase PV inverter with constant common mode voltage and anti-islanding capability’. Proc. IEEE ECCE, 2014, pp. 56135617.
    22. 22)
      • 12. Yen-Shin, L., Po-Sheng, C., Hsiang-Kuo, L., et al: ‘Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects-part II: applications to IM drives with diode front end’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 16131620.
    23. 23)
      • 5. Gubía, E., Sanchis, P., Ursúa, A., et al: ‘Ground currents in single-phase transformerless photovoltaic systems’, Prog. Photovolt., Res. Appl., 2007, 15, (7), pp. 629650.
    24. 24)
      • 18. Kerekes, T., Teodorescu, R., Rodríguez, P., et al: ‘A new high-efficiency single-phase transformerless PV inverter topology’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 184191.
    25. 25)
      • 30. Yang, J., Lee, F.C.: ‘LCL filter design and inductor current ripple analysis for a three-level NPC grid interface converter’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46594668.
    26. 26)
      • 36. Espi, J.M., Castello, J., García-Gil, R., et al: ‘An adaptive robust predictive current control for three-phase grid-connected inverters’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 35373546.
    27. 27)
      • 26. Channegowda, P., John, V.: ‘Filter optimization for grid interactive voltage source inverters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41064114.
    28. 28)
      • 27. Ye, Z., Xu, Y., Wu, X., et al: ‘A simplified PWM strategy for a neutral-point-clamped (NPC) three-level converter with unbalanced dc links’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 32273238.
    29. 29)
      • 24. Dong, D., Luo, F., Zhang, X., et al: ‘Grid-interface bidirectional converter for residential dc distribution systems—part 2: ac and dc interface design with passive components minimization’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 16671679.
    30. 30)
      • 15. Vazquez, G., Kerekes, T., Rocabert, J., et al: ‘A photovoltaic three-phase topology to reduce common mode voltage’. Proc. IEEE ISIE, 2010, pp. 28852890.
    31. 31)
      • 8. DIN VDE 0126–1–1: ‘Automatic disconnection device between a generator and the public low-voltage grid’, 2005.
    32. 32)
      • 39. Maccari, L.A., Santini, C.L.A., Pinheiro, H., et al: ‘Robust optimal current control for grid-connected three-phase pulse-width modulated converters’, IET Power Electron., 2015, 8, (8), pp. 14901499.
    33. 33)
      • 6. Gonzalez, R., Lopez, J., Sanchis, P., et al: ‘Transformerless inverter for single-phase photovoltaic systems’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 693697.
    34. 34)
      • 4. Lopez, O., Freijedo, F.D., Yepes, A.G., et al: ‘Eliminating ground current in a transformerless photovoltaic application’, IEEE Trans. Energy Conv., 2010, 25, (1), pp. 140147.
    35. 35)
      • 28. Choudhury, A., Pillay, P., Williamson, S.S.: ‘Performance comparison study of space-vector and modified-carrier-based PWM techniques for a three-level neutral-point-clamped traction inverter drive’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (3), pp. 10641076.
    36. 36)
      • 29. Beres, R.N., Xiongfei, W., Blaabjerg, F., et al: ‘Optimal design of high-order passive-damped filters for grid-connected applications’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 20832098.
    37. 37)
      • 32. Kangle, R., Xing, Z., Fusheng, W., et al: ‘Optimized design of filter for transformerless three-level photovoltaic grid-connected inverter’. Proc. IEEE TENCON, 2013, pp. 15.
    38. 38)
      • 3. Debnath, D., Chatterjee, K.: ‘Maximising power yield in a transformerless single-phase grid connected inverter servicing two separate photovoltaic panels’, IET Renew. Power Gener., 2016, 10, (8), pp. 10871095.
    39. 39)
      • 34. Myrzik, J.M.A., Calais, M.: ‘String and module integrated inverters for single-phase grid connected photovoltaic systems - a review’. Proc. IEEE PowerTech, 2003, p. 8.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0256
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address