Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Frequency control in an islanded hybrid microgrid using frequency response analysis tools

A hybrid microgrid has numerous decentralised control loops. Therefore, coordination among hybrid microgrid subsystems with desired performance is essential. This study presents a practical control approach for efficient tuning of proportional–integral (PI) controllers and leads compensators in islanded hybrid microgrids. This method is based on the frequency response characteristic and root-locus trajectory. It is used to minimise the frequency deviations of an AC hybrid microgrid. The presented well-tuned controllers are tuned based on droop mechanism, and coordination among hybrid microgrid subsystems with desired damping coefficient and stability margin. Then, the system performance is analysed under several disturbances. The results are compared with PI controllers tuned by Ziegler–Nichols method. As well, the robustness of the proposed approach in a wide range of parameter changes is investigated. Eigenvalue analysis and simulation results show that the minimum frequency deviations and desired relative stability of the hybrid microgrid subsystems are achieved by the proposed controllers. To show generality and efficiency of the proposed approach, the presented method is applied to a different hybrid microgrid model used in the literature. For this purpose, in order to control the frequency deviations in the stand-alone mode, presented well-tuned controller is compared with intelligent fuzzy and particle swarm optimisation-fuzzy controllers.

References

    1. 1)
      • 7. Sachs, J., Sawodny, O.: ‘A two-stage model predictive control strategy for economic diesel-PV-battery island microgrid operation in rural areas’, IEEE Trans. Sust. Energy, 2016, 7, (3), pp. 903913.
    2. 2)
      • 39. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2010, 4, (5), pp. 438457.
    3. 3)
      • 22. Sa-ngawong, N., Ngamroo, I.: ‘PSO-based Sugeno fuzzy logic controller of photovoltaic generator for frequency stabilization in stand-alone power system’. 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), 2013.
    4. 4)
      • 31. Kariniotakis, G., Stavrakakis, G.: ‘A general simulation algorithm for the accurate assessment of isolated diesel-wind turbines systems interaction. Part II: implementation of the algorithm and case-studies with induction generators’, IEEE Trans. Energy Convers., 1995, 10, (3), pp. 584590.
    5. 5)
      • 37. Bevrani, H.: ‘Robust power system frequency control’ (Springer, New York, 2009), vol. 85.
    6. 6)
      • 15. Zhu, X., Li, X., Shen, G., et al: ‘Design of the dynamic power compensation for PEMFC distributed power system’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 19351944.
    7. 7)
      • 38. Bevrani, H., Ise, T.: ‘Microgrid dynamics and control’ (John Wiley & Sons, New Jersey, 2017).
    8. 8)
      • 18. Inthamoussou, F.A., Pegueroles-Queralt, J., Bianchi, F.D.: ‘Control of a supercapacitor energy storage system for microgrid applications’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 690697.
    9. 9)
      • 36. Tan, W., Zhang, J.: ‘Load frequency control for wind-diesel hybrid systems’. 2011 30th Chinese Control Conf. (CCC), 2011.
    10. 10)
      • 24. Kwakernaak, H., Sivan, R.: ‘Linear optimal control systems’ (Wiley-Interscience, New York, 1972), vol. 1.
    11. 11)
      • 17. Nayeripour, M., Hoseintabar, M., Niknam, T.: ‘Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system’, Renew. Energy, 2011, 36, (6), pp. 17411746.
    12. 12)
      • 30. Nacfaire, H.: ‘Wind-diesel and wind autonomous energy systems’ (CRC Press, Mykonos, Greece, 1989).
    13. 13)
      • 21. Kakigano, H., Miura, Y., Ise, T.: ‘Distribution voltage control for dc microgrids using fuzzy control and gain-scheduling technique’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 22462258.
    14. 14)
      • 13. Bevrani, H., Feizi, M.R., Ataee, S.: ‘Robust frequency control in an islanded microgrid: H∞ and µ-synthesis approaches’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 706717.
    15. 15)
      • 32. Stavrakakis, G., Kariniotakis, G.: ‘A general simulation algorithm for the accurate assessment of isolated diesel-wind turbines systems interaction. Part I: A general multimachine power system model’, IEEE Trans. Energy Convers., 1995, 10, (3), pp. 577583.
    16. 16)
      • 27. Bhatti, T., Al-Ademi, A., Bansal, N.: ‘Load frequency control of isolated wind diesel hybrid power systems’, Energy Convers. Manage., 1997, 38, (9), pp. 829837.
    17. 17)
      • 16. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: ‘Control of fuel cell power systems: principles, modeling, analysis and feedback design’ (Springer Science & Business Media, 2004).
    18. 18)
      • 2. Lasseter, R., Akhil, A., Marnay, C., et al: ‘The CERTS microgrid concept’. White paper for Transmission Reliability Program, Office of Power Technologies, US Department of Energy, 2002, vol. 2, issue 3, p. 30.
    19. 19)
      • 3. Lasseter, R.H., Eto, J., Schenkman, B., et al: ‘CERTS microgrid laboratory test bed’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 325332.
    20. 20)
      • 4. Nichols, D.K., Stevens, J., Lasseter, R.H., et al: ‘Validation of the CERTS microgrid concept the CEC/CERTS microgrid testbed’. Power Engineering Society General Meeting, 2006, 2006.
    21. 21)
      • 9. Sekhar, P., Mishra, S., Sharma, R.: ‘Data analytics based neuro-fuzzy controller for diesel-photovoltaic hybrid AC microgrid’, IET Gener. Transm. Distrib., 2015, 9, (2), pp. 193207.
    22. 22)
      • 5. Bevrani, H., Habibi, F., Babahajyani, P., et al: ‘Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19351944.
    23. 23)
      • 1. Eto, J., Lasseter, R., Schenkman, B., et al: Overview of the CERTS microgrid laboratory test bed. 2009 CIGRE/IEEE PES Joint Symp. Integration of Wide-Scale Renewable Resources into the Power Delivery System, 2009.
    24. 24)
      • 14. Kunusch, C., Puleston, P., Mayosky, M.: ‘Control-oriented modeling and experimental validation of a PEMFC generation system’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 851861.
    25. 25)
      • 28. Tripathy, S., Kalantar, M., Balasubramanian, R.: ‘Dynamics and stability of wind and diesel turbine generators with superconducting magnetic energy storage unit on an isolated power system’, IEEE Trans. Energy Convers., 1991, 6, (4), pp. 579585.
    26. 26)
      • 8. Pathak, G., Singh, B., Panigrahi, B.K.: ‘Control of wind-diesel microgrid using affine projection-like algorithm’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 524531.
    27. 27)
      • 25. Kuo, B.C.: ‘Automatic control systems’ (Prentice Hall PTR, New Jersey, 1987).
    28. 28)
      • 12. Eghtedarpour, N., Farjah, E.: ‘Power control and management in a hybrid AC/DC microgrid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14941505.
    29. 29)
      • 20. Kamel, R.M., Chaouachi, A., Nagasaka, K.: ‘Enhancement of micro-grid performance during islanding mode using storage batteries and new fuzzy logic pitch angle controller’, Energy Convers. Manage., 2011, 52, (5), pp. 22042216.
    30. 30)
      • 26. Bevrani, H.: ‘Robust power system frequency control’ (Springer, Boston, 2014).
    31. 31)
      • 35. Papathanassiou, S.A., Papadopoulos, M.P.: ‘Dynamic characteristics of autonomous wind–diesel systems’, Renew. Energy, 2001, 23, (2), pp. 293311.
    32. 32)
      • 29. Scott, G., Wilreker, V., Shaltens, R.: ‘Wind turbine generator interaction with diesel generators on an isolated power system’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, (5), pp. 933937.
    33. 33)
      • 6. Mahmood, H., Michaelson, D., Jiang, J.: ‘Decentralized power management of a PV/battery hybrid unit in a droop controlled islanded microgrid’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 72157229.
    34. 34)
      • 11. Patterson, M., Macia, N.F., Kannan, A.M.: ‘Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 359366.
    35. 35)
      • 19. Singh, V.P., Mohanty, S.R., Kishor, N., et al: ‘Robust H-infinity load frequency control in hybrid distributed generation system’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 294305.
    36. 36)
      • 10. Dou, C., Zhang, Z., Yue, D., et al: ‘Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid’, IET Gener. Transm. Distrib., 2016, 11, pp. 10461054.
    37. 37)
      • 34. An, C.S., Hashiguchi, T., Goda, T.:‘Control scheme of hybrid wind-diesel power generation system’, in Krause, G. (Ed.): ‘From turbine to wind farms – technical requirements and spin-off products’ (InTech, India, 2011).
    38. 38)
      • 33. Tripathy, S.: ‘Dynamic simulation of hybrid wind-diesel power generation system with superconducting magnetic energy storage’, Energy Convers. Manage., 1997, 38, (9), pp. 919930.
    39. 39)
      • 23. Ogata, K., Yang, Y.: ‘Modern control engineering’ (Prentice-Hall, New Jersey, 1970).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0227
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0227
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address