http://iet.metastore.ingenta.com
1887

Two-level game algorithm for multi-microgrid in electricity market

Two-level game algorithm for multi-microgrid in electricity market

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The operation mode of microgrids influences the dispatching management of distribution system in the power market. The study uses game theory to study dispatching strategies between multi-microgrid in the distribution system. For this purpose, a two-level game model of multi-microgrid dispatching in the electricity market is proposed. Firstly, the upper level of the model researches the answer of a basic question for a multi-microgrid distribution system that what the boundary line between non-cooperation mode and coalition mode is. Secondly, by the lower level of the model, multi-microgrid decides the operation mode ultimately when it is uncertain in the upper level of model. The upper level is a non-cooperative price game between multi-microgrid and distribution system while the lower level is a cooperative trading loss cost game. In order to optimise multi-microgrid dispatching, an algorithm is proposed to allow microgrids merge or split self-adaptively based on NSGA-II. Simulation result shows that the proposed algorithm can find the Nash equilibrium of the upper level of the model and the optimal operation mode for multi-microgrid in the two-level game, which yields a reduction of 52.7% in coalition mode compared to non-cooperation mode.

References

    1. 1)
      • C. Wang , Z. Wu , P. Li .
        1. Wang, C., Wu, Z., Li, P.: ‘Research on key technologies of microgrid’, Trans. China Electrotechn. Soc., 2014, 29, (2), pp. 112.
        . Trans. China Electrotechn. Soc. , 2 , 1 - 12
    2. 2)
      • C. Chen , S. Duan , T. Cai .
        2. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
        . IET Renew. Power Gener. , 3 , 258 - 267
    3. 3)
      • M. Alam , S. Ramchurn , Rogers .
        3. Alam, M., Ramchurn, S., Rogers, , et al: ‘Cooperative energy exchange for the efficient use of energy and resources in remote communities’. Proc. of the 2013 Int. Conf. Autonomous Agents and Multi-agent Systems, SaintPaul, Minnesota, USA, 2013, pp. 731738.
        . Proc. of the 2013 Int. Conf. Autonomous Agents and Multi-agent Systems , 731 - 738
    4. 4)
      • J. Ni , Q. Ai .
        4. Ni, J., Ai, Q.: ‘Economic power transaction using coalitional game strategy in micro-grids’, IET. Gener. Transm. Distrib., 2016, 10, (1), pp. 1018.
        . IET. Gener. Transm. Distrib. , 1 , 10 - 18
    5. 5)
      • L. Xiao , N.B. Mandayam , H.V. Poor .
        5. Xiao, L., Mandayam, N.B., Poor, H.V.: ‘Prospect theoretic analysis of energy exchange among microgrids’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 6372.
        . IEEE Trans. Smart Grid , 1 , 63 - 72
    6. 6)
      • N. Kumar , S. Doolla .
        6. Kumar, N., Doolla, S.: ‘Multi-agent-based distributed- energy-resource management for intelligent microgrids’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16781687.
        . IEEE Trans. Ind. Electron. , 4 , 1678 - 1687
    7. 7)
      • F.A. Mohamed , H.N. Koivo .
        7. Mohamed, F.A., Koivo, H.N.: ‘System modelling and online optimal management of microgrid using mesh adaptive direct search’, Int. J. Electr. Power Energy Syst., 2010, 32, (5), pp. 398407.
        . Int. J. Electr. Power Energy Syst. , 5 , 398 - 407
    8. 8)
      • Q. Lu , L. Chen , S. Mei .
        8. Lu, Q., Chen, L., Mei, S.: ‘Typical applications and prospects of game theory in power system’, Proc. CSEE, 2014, 34, (29), pp. 50095017.
        . Proc. CSEE , 29 , 5009 - 5017
    9. 9)
      • C. Wu , B. Gao , Y. Tang .
        9. Wu, C., Gao, B., Tang, Y.: ‘Master-slave game based bilateral contract transaction model for generation companies and large consumers’, Power Syst. Technol., 2016, 40, (22), pp. 5662.
        . Power Syst. Technol. , 22 , 56 - 62
    10. 10)
      • H. Chen , S. Huang , Z. Fan .
        10. Chen, H., Huang, S., Fan, Z., et al: ‘Demand response of multi-microgrid based on game theory’, Southern Power Syst. Technol., 2017, 11, (2), pp. 3440.
        . Southern Power Syst. Technol. , 2 , 34 - 40
    11. 11)
      • H. Li , C. Liu .
        11. Li, H., Liu, C.: ‘A study on the model and control algorithm for coalitional game of micro-grid’, Smart Grid, 2016, 4, (3), pp. 291296.
        . Smart Grid , 3 , 291 - 296
    12. 12)
      • Z.M. Fadlullah , N. Kato . (2015)
        12. Fadlullah, Z.M., Kato, N.: ‘Game-theoretic coalition formulation strategy for reducing power loss in micro grids’ (Evolution of Smart Grids, Springer International Publishing, 2015, 1st edn.).
        .
    13. 13)
      • K. Nunna , S. Doolla .
        13. Nunna, K., Doolla, S.: ‘Multi agent based distributed energy resource management for intelligent microgrids’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16781687.
        . IEEE Trans. Ind. Electron. , 4 , 1678 - 1687
    14. 14)
      • S. Mei , F. Liu , W. Wei . (2016)
        14. Mei, S., Liu, F., Wei, W.: ‘Engineering game theory and application of power system’ (Science Press, 2016, 1st edn.).
        .
    15. 15)
      • X. Huang . (2016)
        15. Huang, X.: ‘Selected paper on energy strategies’ (Social Science Academic Press, 2016, 1st edn.).
        .
    16. 16)
      • T. Li .
        16. Li, T.: ‘The study on game alliance formation and distribution for multiple agent system’. PhD thesis, Yunnan University, 2013.
        .
    17. 17)
      • P. Jiang .
        17. Jiang, P.: ‘Cooperative game and its application research’. PhD thesis, Shandong University, 2007.
        .
    18. 18)
      • S. Charaborty , S. Nakamura , T. Okabe .
        18. Charaborty, S., Nakamura, S., Okabe, T.: ‘Scalable and optimal coalition formation of microgrids in a distribution system’. Proc. of the Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Istanbul, Turkey, 2014, pp. 16.
        . Proc. of the Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe) , 1 - 6
    19. 19)
      • J. Machowski , J.W. Bialek , J.R. Bumby . (2008)
        19. Machowski, J., Bialek, J.W., Bumby, J.R.: ‘Power system dynamics: stability and control’ (Wiley, 2008, 2nd edn.).
        .
    20. 20)
      • K.R. Apt , A. Witzel .
        20. Apt, K.R., Witzel, A.: ‘A generic approach to coalition formation’, Int. Game Theory Rev., 2009, 11, (3), pp. 347367.
        . Int. Game Theory Rev. , 3 , 347 - 367
    21. 21)
      • M. Zhao , Y. Chen , F. Liu .
        21. Zhao, M., Chen, Y., Liu, F., et al: ‘A-game-theoretic approach to analyzing power trading possibilities in multi-microgrids’, Proc. CSEE, 2015, 35, (4), pp. 848857.
        . Proc. CSEE , 4 , 848 - 857
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0212
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address