Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance and economic analysis of a 27 kW grid-connected photovoltaic system in Suriname

The performance of a grid-connected photovoltaic (PV) system, under the Surinamese weather conditions, is monitored and reported. A measurement and data-logging system provides inputs for the calculation of selected standard key performance indicators (KPI). Calculated KPI's are compared to expected values obtained from modelling the system using the PVSyst software. In addition, results from selected comparable studies are also used to compare the computed KPI's. Using one year data, the annual energy yield (Eac ) totalled 37 MWh. This value is 6% higher than the one obtained from the modelling software. The calculated performance ratio (PR) and capacity factor (CF) of 74.5 and 15.5%, respectively, are also higher than the ones obtained from PVSyst. The difference can be attributed to the irradiance data (satellite data, monthly averages) used for input in the PVSyst software. The above mentioned calculated values for the PR and CF compared favourably with internationally reported values for systems located in regions with similar weather patterns. Using a total investment cost of 109,000 USD the levelised cost of energy (LCOE) calculated with the RETScreen software equals USD 0.36 /kWh. This LCOE is three times the current energy price in Suriname.

References

    1. 1)
      • 6. Ghouari, A., Hamouda, Ch., Chaghi, A., et al: ‘Data Monitoring and Performance Analysis of a 1.6 kWp Grid Connected PV System in Algeria’, Int. J. Renew. Energy Res., 2016, 6, (1), pp. 3442.
    2. 2)
      • 21. Villicaña-Ortiz, E., Gutiérrez-Trashorras, A.J., Paredes-Sánchez, J.B., et al: ‘Solar energy potential in the coastal zone of the Gulf of Mexico’, Renew. Energy, 2015, 81, pp. 534542.
    3. 3)
      • 15. ‘Distributed Generation Renewable Energy Estimate of Costs’, Available at http://www.nrel.gov/analysis/tech_lcoe_re_cost_est.html, accessed 18 April 2016.
    4. 4)
      • 19. Fraunhofer Institute for Solar Energy systems ISE: ‘STUDY LEVELIZED COST OF ELECTRICITY ENEWABLE ENERGIES’ (Fraunhofer Institute for Solar Energy Systems ISE, 2012), pp. 125.
    5. 5)
      • 25. Ayompe, L., Duffy, A., McCormack, S., et al: ‘Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland’, Energy Convers. Manage., 2011, 52, (2), pp. 816825.
    6. 6)
      • 16. Ringbeck, S., Sutterlueti, J.: ‘BoS costs: status and optimization to reach industrial grid parity’, Prog. Photovolt., Res. Appl., 2013, 21, (6), pp. 14111428.
    7. 7)
      • 29. ‘BETALEN’: Available at http://www.nvebs.com/thuis/elektriciteit/betalen/, accessed 20 April 2016.
    8. 8)
      • 23. Huawei Technologies Co., Ltd.: ‘SUN2000 (8KTL-28KTL) user manual’ (Huawei Technologies Co., Ltd., 2014), Issue 07 2014.
    9. 9)
      • 20. NREL: ‘On the path to sunshot: the role of advancements in solar photovoltaic efficiency, reliability, and costs’ (National Renewable Energy Laboratory, 2016), pp. 143.
    10. 10)
      • 8. International Finance Cooperation (IFC) WORLD BANK GROUP: ‘Utility-scale solar photovoltaic power plants a project developer's guide’ (International Finance Corporation, 2015), pp. 1206.
    11. 11)
      • 2. International Renewable Energy Agency (IRENA): ‘Renewable energy policy brief SURINAME’ (International Renewable Energy Agency (IRENA), 2015), pp. 16.
    12. 12)
      • 4. Bhaggoe, D., Radjie, W.: ‘Rural electrification in Suriname: Electrification policy for the interior of Suriname’. BSc thesis, Anton de Kom University of Suriname, 2008.
    13. 13)
      • 31. ‘Solar PPAs in Latin America: How long can they go’, Available at newenergyevents.com/solar-ppas-in-latin-america-how-low-can-they-go/, accessed 10 April 2016.
    14. 14)
      • 18. ‘Historical inflation Rates: 1914–2017’, Available at www.usinflationcalculator.com/inflation/historical-inflation-rates/, accesses 1 March 2017.
    15. 15)
      • 14. Mirzahosseini, A.H., Taheri, T.: ‘Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran’, Renew. Sustain. Energy Rev., 2012, 16, pp. 28062811.
    16. 16)
      • 1. Inter-American Development Bank (IDB): ‘Support to improve sustainability of the electricity service investment loan (SU-L1009)’ (Inter-American Development Bank (IDB), 2013), pp. 120.
    17. 17)
      • 9. International Energy Agency (IEA): ‘Analytical Monitoring of Grid-connected Photovoltaic Systems Good Practices for Monitoring and Performance Analysis’ (International Energy Agency, 2014), pp. 176.
    18. 18)
      • 13. Djuwari, E.T., Kartikasari, F.D.: ‘Techno-economic simulation of a grid-connected PV system design as specifically applied to residential’. New, Renewable Energy and Energy Conservation in Conf. and Exhibition Indonesia, Surabaya, Indonesia, 2015, pp. 9099.
    19. 19)
      • 17. Raghoebarsing, A.: ‘Pre-feasibility study of 1 MW PV system connected to the NV EBS grid’. MSc thesis, Anton de Kom University of Suriname, 2013.
    20. 20)
      • 28. Hussin, M.Z., Omar, A.M., Zain, Z.M., et al: ‘Performance of grid-connected photovoltaic system in equatorial rainforest fully humid climate of Malaysia’, Int. J. Appl. Power Eng. (IJAPE), 2013, 2, (3), pp. 105114.
    21. 21)
      • 22. Linyang Renewable: ‘Polycrystalline solar module Linyang SOLAR’ (Linyang Renewable, 2013).
    22. 22)
      • 30. International Renewable Energy Agency (IRENA): ‘Renewable power generation costs in 2014’ (International Renewable Energy Agency (IRENA), 2015), pp. 1159.
    23. 23)
      • 26. So, J.H., Junga, Y.S., Yua, G.J., et al: ‘Performance results and analysis of 3 kW grid-connected PV systems’, Renew. Energy, 2007, 32, pp. 18581872.
    24. 24)
      • 24. Kymakis, E., Kalykakis, S., Papazoglou, T.M.: ‘Performance analysis of a grid connected photovoltaic park on the Island of Crete’, Energy Convers. Manage., 2008, 50, pp. 433438.
    25. 25)
      • 27. Chimtavee, A., Ketjoy, N.: ‘PV generator performance evaluation and load analysis of the PV microgrid system in Thailand’, Proc. Eng., 2012, 32, pp. 384391.
    26. 26)
      • 12. Bianchini, A., Gambuti, M., Pellegrini, M.: ‘Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements’, Renew. Energy, 2016, 85, pp. 111.
    27. 27)
      • 5. Sharma, V., Chandel, S.S.: ‘Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India’, Energy, 2013, 55, pp. 476485.
    28. 28)
      • 11. Humada, A.M., Hojabri, M., Hamada, H.M., et al: ‘Performance evaluation of two PV technologies (c-Si and CIS) for building integrated photovoltaic based on tropical climate condition: a case study in Malaysia’, Energy Build., 2016, 119, pp. 233241.
    29. 29)
      • 3. Amatssoleman, R., Yu, R.: ‘Het ontwikkelen van een ‘management tool’ te gebruiken bij elektriciteitsvoorzieningsprojecten: renewable energyprojecten in hetbinnenland van Suriname’. BSc thesis, Anton de Kom University of Suriname, 2008.
    30. 30)
      • 7. Sundaram, S., Babu, J.S.C.: ‘Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India’, Energy Convers. Manage., 2015, 100, pp. 429439.
    31. 31)
      • 10. IS/IEC 61724: ‘Photovoltaic System Performance Monitoring – Guidelines for Measurement, Data exchange and Analysis’, 1998.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0204
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address