Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Planning a decentralised and bi-directional market-based management system

The increases in renewable current sources, prosumers and decentralised control generation in centralised grids have increased the fluctuations in electricity costs, increased the bi-direction power flow problems and changed the operation and investment of the centralised grid. These new constraints have to be observed to manage the design of the market, the new management near the load and the new operators for the power system. This study proposes a stochastic framework for the centralised grid with a market-based, decentralised management and bi-directional power flow of mixed generators of electrical energy. A decentralised and bi-directional market-based management system (DBMBMS) model is developed which considers the operation costs, security and reliability of the centralised grid, the spot market price, weather changes and the fluctuations in the load. A differential evolution technique with a Monte Carlo program is used in aggregation with bi-directional power flows to find the optimal solutions, depending on the uncertainties of the centralised grid. Using a DBMBMS model, optimal load and price management are then realised, based on the decision-maker's choices. The impacts of this new management system on the reduction of the total electricity prices of the different power sources are analysed and illustrated with practical case studies.

References

    1. 1)
      • 24. Dabbagh, S.R., Sheikh-El-Eslami, M.K.: ‘Risk assessment of virtual power plants offering in energy and reserve markets’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 35723582.
    2. 2)
      • 20. I. S. Group, Managing big data for smart grids and smart meters, IBM Corporation, whitepaper (May 2012).
    3. 3)
      • 30. Karangelos, E., Bouffard, F.: ‘Towards full integration of demand-side resources in joint forward energy/reserve electricity markets’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 280289.
    4. 4)
      • 1. Cardell, J.: ‘Distributed resource participation in local balancing energy markets’, Proc. 2007 IEEE Lausanne PowerTech, Lausanne, Switzerland, 2007, pp. 510515.
    5. 5)
      • 14. Maria, D., Giuseppe, F., Mariagiovanna, P., et al: ‘Planning and operating combined wind-storage system in electricity market’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 209217.
    6. 6)
      • 44. Australian Energy Market Operator and Electranet: ‘Renewable energy integration in New South Wales Australia – joint AEMO & electranet report’, 2017.
    7. 7)
      • 41. Schachter, J., Mancarella, P., Moriarty, J., et al: ‘Flexible investment under uncertainty in smart distribution networks with demand side response: assessment framework and practical implementation’, Energy Policy, 2016, 97, pp. 439449.
    8. 8)
      • 5. Erdinc, O., Paterakis, N., Mendes, T., et al: ‘Smart household operation considering bi-directional EV and ESS utilization by real-time pricing-based DR’, IEEE Trans. Power Syst., 2015, 6, pp. 12811291.
    9. 9)
      • 16. Thatte, A.A., Xie, L., Viassolo, D.E., et al: ‘Risk measure based robust bidding strategy for arbitrage using a wind farm and energy storage’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 21912199.
    10. 10)
      • 11. Aghaei, J., Alizadeh, M.I.: ‘Demand response in smart electricity grids equipped with renewable energy sources’, Rev. Renew. Sustain. Energy Rev., 2013, 18, pp. 6472.
    11. 11)
      • 38. Kopsidas, K., Kapetanaki, A., Levi, V., et al: ‘Optimal demand response scheduling with real time thermal ratings of overhead lines for improved network reliability’, IEEE Trans. Smart Grid, 2016. Available at http://dx.doi.org/10.1109/TSG.2016.2542922, accessed 11/3/2017.
    12. 12)
      • 39. Siano, P., Sarno, D.: ‘Assessing the benefits of residential demand response in a real time distribution energy market’, Appl. Energy, 2016, 161, pp. 533551.
    13. 13)
      • 42. Soroudi, A., Siano, P., Keane, A.: ‘Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty’, IEEE Trans. Smart Grid, 2016, 7, pp. 261672.
    14. 14)
      • 34. Borowy, B., Salameh, Z.: ‘Optimum photovoltaic array size for a hybrid wind/PV system’, IEEE Trans. Energy Convers., 1994, 9, pp. 482488.
    15. 15)
      • 2. Corn, M., Cerne, G., Papic, I., et al: ‘Improved integration of renewable energy sources with the participation of active customers’, J. Mech. Eng., 2014, 60, (4), pp. 274282.
    16. 16)
      • 40. Chen, Z., Wu, L., Fu, Y.: ‘Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18221831.
    17. 17)
      • 43. ‘AEMO (Australian Energy Market Operator)’, Electricity Statement of Opportunities, 2017.
    18. 18)
      • 13. Taylor, J., Mathieu, J., Callaway, D., et al: ‘Price and capacity competition in balancing markets with energy storage’, Energy Syst., 2016, 8, (1), pp. 169197.
    19. 19)
      • 35. Youcef, F., Mefti, A., Adane, A., et al: ‘Statistical analysis of solar measurements in Algeria using beta distributions’, Renew. Energy, 2002, 26, pp. 4767.
    20. 20)
      • 36. Walawalkar, R., Fernands, S., Thakur, N., et al: ‘Evolution and current status of demand response (DR) in electricity markets: insights from PJM and NYISO’, Energy, 2010, 35, (4), pp. 15531560.
    21. 21)
      • 19. Saad, W., Han, Z., Poor, H.V., et al: ‘Game-theoretic methods for the smart grid: an overview of microgrid systems, demand-side management, and smart grid communications’, IEEE Signal Process. Mag., 2012, 29, (5), pp. 86105. Available at http://dx.doi.org/10.1109/MSP.2012.2186410, accessed 11/3/2017.
    22. 22)
      • 7. Syrri, A.L., Martínez Ceseña, E.A., Mancarella, P.: ‘Contribution of microgrids to distribution network reliability’. Proc. 2015 IEEE Eindhoven PowerTech, 2015, pp. 16. Available at http://dx.doi.org/10.1109/PTC.2015.7232486, accessed 11/3/2017.
    23. 23)
      • 33. Wangdee, W., Billinton, R.: ‘Considering load carrying capability and wind speed correlation of WECS in generation adequacy assessment’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 734741.
    24. 24)
      • 32. Kazempour, S.J., Moghaddam, M.P., Haghifam, M., et al: ‘Electric energy storage systems in a market-based economy: comparison of emerging and traditional technologies’, Renew. Energy, 2009, 34, (12), pp. 26302639.
    25. 25)
      • 3. Nestle, D., Ringelstein, J.: ‘Integration of DER into distribution grid operation and decentralized energy management’, Smart Grids Europe 2009, Barcelona, 2009.
    26. 26)
      • 12. Riesz, J., MacGill, I., Gilmore, J.: ‘Examining the viability of energy-only markets with high renewable penetrations’. 2014 IEEE PES General Meeting – Conf. Exposition, July 2014, pp. 15.
    27. 27)
      • 29. Ali, M., Dong, Z.Y., Zhang, P.: ‘Adoptability of grid computing in power systems analysis, operations and control’, IET Gener. Transm. Distrib., 2009, 3, (10), pp. 949959.
    28. 28)
      • 22. Kardakos, E.G., Simoglou, C.K., Bakirtzis, A.G.: ‘Optimal offering strategy of a virtual power plant: a stochastic bi-level approach’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 794806.
    29. 29)
      • 18. Matallanas, E., Castillo-Cagigal, M., Gutierrez, A., et al: ‘Neural network controller for active demand-side management with PV energy in the residential sector’, Appl. Energy, 2012, 91, pp. 9097.
    30. 30)
      • 26. Heleno, M., Matos, M.A., Lopes, J.A.P.: ‘Availability and flexibility of loads for the provision of reserve’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 667674.
    31. 31)
      • 6. Erdinc, O., Paterakis, N., Mendes, T., et al: ‘A new perspective for sizing of distributed generation and energy storage for smart households under demand response’, Appl. Energy, 2015, 143, pp. 2637.
    32. 32)
      • 27. Salmani, M.A., Anzalchi, A., Salmani, S.: ‘Virtual power plant: new solution for managing distributed generations in decentralized power systems’. 2010 Int. Conf. Management and Service Science (MASS), 2010, pp. 16.
    33. 33)
      • 15. Denholm, P., Hand, M.: ‘Grid flexibility and storage required to achieve very high penetration of variable renewable electricity’, Energy Policy, 2011, 39, (3), pp. 18171830.
    34. 34)
      • 8. Brenna, M., Falvo, M.C., Foiadelli, F., et al: ‘From virtual power plant (VPP) to sustainable energy microsystem (SEM): an opportunity for buildings energy management’. 2015 IEEE Industry Applications Society Annual Meeting, 2015, pp. 18.
    35. 35)
      • 37. Schachter, J.A., Mancarella, P.: ‘Demand response contracts as real options: a probabilistic evaluation framework under short-term and long-term uncertainties’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 868878.
    36. 36)
      • 9. Zou, P., Chen, Q., Xia, Q., et al: ‘Modeling and algorithm to find the economic equilibrium for pool-based electricity market with the changing generation mix’, IEEE Trans. Power Syst., 2016, 1, (177), pp. 260270.
    37. 37)
      • 17. Akhavan-Hejazi, H., Mohsenian-Rad, H.: ‘Optimal operation of independent storage systems in energy and reserve markets with high wind penetration’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 10881097.
    38. 38)
      • 23. Rahimiyan, M., Baringo, L.: ‘Strategic bidding for a virtual power plant in the day-ahead and real-time markets: a price-taker robust optimization approach’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 26762687.
    39. 39)
      • 21. Conejo, A.J., Carrion, M., Morales, J.M.: Decision-making under uncertainty in electricity markets, (Springer, New York, 2010).
    40. 40)
      • 28. Joung, M., Kim, J.: ‘Assessing demand response and smart metering impacts on long-term electricity market prices and system reliability’, Appl. Energy, 2013, 101, (1), pp. 441448.
    41. 41)
      • 25. Mnatsakanyan, A., Kennedy, S.W.: ‘A novel demand response model with an application for a virtual power plant’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 230237.
    42. 42)
      • 4. Missaoui, R., Joumaa, H., Ploix, S., et al: ‘Managing energy smart homes according to energy prices: analysis of a building energy management system’, Energy Build., 2014, 71, pp. 155167.
    43. 43)
      • 10. Awad, A.S.A., Fuller, J.D., EI-Fouly, T.H.M., et al: ‘Impact of energy storage systems on electricity market equilibrium’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 875885.
    44. 44)
      • 31. Dusonchet, L., Ippolito, M.G., Telaretti, E., et al: ‘An optimal operating strategy for combined RES-based generators and electric storage systems for load shifting applications’. Proc. Fourth Int. Conf. Power Engineering, Energy and Electrical Drives (POWERENG 2013), Istanbul, Turkey, May 2013, pp. 552557.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0190
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0190
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address