Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Stochastic security and risk-constrained scheduling for an autonomous microgrid with demand response and renewable energy resources

Increasing penetration of intermittent renewable energy sources and the development of advanced information give rise to questions on how responsive loads can be managed to optimise the use of resources and assets. In this context, demand response as a way for modifying the consumption pattern of customers can be effectively applied to balance the demand and supply in electricity networks. This study presents a novel stochastic model from a microgrid (MG) operator perspective for energy and reserve scheduling considering risk management strategy. It is assumed that the MG operator can procure energy from various sources, including local generating units and demand-side resources to serve the customers. The operator sells electricity to customers under real-time pricing scheme and the customers response to electricity prices by adjusting their loads to reduce consumption costs. The objective is to determine the optimal scheduling with considering risk aversion and system frequency security to maximise the expected profit of operator. To deal with various uncertainties, a risk-constrained two-stage stochastic programming model is proposed where the risk aversion of MG operator is modelled using conditional value at risk method. Extensive numerical results are shown to demonstrate the effectiveness of the proposed framework.

References

    1. 1)
      • 23. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘A stochastic framework for short-term operation of a distribution company’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 47124721.
    2. 2)
      • 5. Aghaei1, J., Alizadeh, M.I., Abdollahi, A., et al: ‘Allocation of demand response resources: toward an effective contribution to power system voltage stability’, IET Gener. Transm. Distrib., 2016, 10, (16), pp. 41694177.
    3. 3)
      • 24. Anvari-Moghaddam, A., Seifi, A.R.: ‘Study of forecasting renewable energies in smart grids using linear predictive filters and neural networks’, IET Renew. Power Gener., 2011, 5, (6), pp. 470480.
    4. 4)
      • 18. Conejo, A.J., Carrion, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’ (Springer, New York, NY, USA, 2010).
    5. 5)
      • 6. Anvari-Moghaddam, A., Guerrero, J.M., Vasquez, J.C., et al: ‘Efficient energy management for a grid-tied residential microgrid’, IET Gener. Transm. Distrib., 2017, 11, (11), pp. 27522761.
    6. 6)
      • 30. Arthur, D., Vassilvitskii, S.: ‘K-means++: the advantages of careful seeding’. Proc. 18th Annual ACM-SIAM Symp. Discrete Algorithms (SODA ‘07), New Orleans, LA, USA, 2007, pp. 10271035.
    7. 7)
      • 10. Moshari, A., Ebrahimi, A., Fotuhi-Firuzabad, M.: ‘Short-term impacts of DR programs on reliability of wind integrated power systems considering demand-side uncertainties’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 24812490.
    8. 8)
      • 9. Parvizimosaed, M., Farmani, F., Anvari-Moghaddam, A.: ‘Optimal energy management of a micro-grid with renewable energy resources and demand response’, J. Renew. Sustain. Energy, 2013, 5, (5), pp. 3148.
    9. 9)
      • 13. Rezaei, N., Kalantar, M.: ‘Smart microgrid hierarchical frequency control ancillary service provision based on virtual inertia concept: an integrated demand response and droop controlled distributed generation framework’, Energy Convers. Manage., 2015, 92, pp. 287301.
    10. 10)
      • 17. Anderson, C.L., Cardell, J.B.: ‘A decision framework for optimal pairing of wind and demand response resources’, IEEE Syst. J., 2012, 29, (1), pp. 149159.
    11. 11)
      • 15. Shayeghi, H., Sobhani, B.: ‘Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainty’, Energy Convers. Manage., 2014, 87, pp. 765777.
    12. 12)
      • 32. Rezaei, N., Kalantar, M.: ‘Stochastic frequency-security constrained energy and reserve management of an inverter interfaced islanded microgrid considering demand response programs’, Int. J. Electr. Power Energy Syst., 2015, 69, pp. 273286.
    13. 13)
      • 36. The general algebraic modeling system (GAMS) software’. Available at http://www.gams.com, accessed 15 September 2016.
    14. 14)
      • 29. Damousis, I.G., Bakirtzis, A.G., Dokopolous, P.S.: ‘A solution to the unit-commitment problem using integer coded genetic algorithm’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 11651172.
    15. 15)
      • 22. Carrion, M., Philpott, A.B., Conejo, A.J., et al: ‘A stochastic programming approach to electric energy procurement for large consumers’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 744754.
    16. 16)
      • 27. Korwar, R.M.: ‘On stochastic orders for sums of independent random variables’, J. Multivar. Anal., 2002, 80, pp. 344357.
    17. 17)
      • 3. Aalami, H.A., Nojavan, S.: ‘Energy storage system and demand response program effects on stochastic energy procurement of large consumers considering renewable generation’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 107114.
    18. 18)
      • 8. Shan, J., Botterud, A., Ryan, S.M.: ‘Impact of demand response on thermal generation investment with high wind penetration’, IEEE Trans. Smart Grid, 2013, 4, pp. 23742383.
    19. 19)
      • 25. Aghaei, J., Karami, M., Muttaqi, K.M., et al: ‘MIP-based stochastic security-constrained daily hydrothermal generation scheduling’, IEEE Syst. J., 2015, 9,(2), pp. 615628.
    20. 20)
      • 33. Conti, S., Nicolosi, R., Rizzo, S.A., et al: ‘Optimal dispatching of distributed generators and storage systems for MV islanded microgrids’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 12431251.
    21. 21)
      • 12. Rezaei, N., Kalantar, M.: ‘Economic–environmental hierarchical frequency management of a droop-controlled islanded microgrid’, Energy Convers. Manage., 2014, 88, pp. 498515.
    22. 22)
      • 1. Shariatzadeh, F., Mandal, P., Srivastava, A.K.: ‘Demand response for sustainable energy systems: a review, application and implementation strategy’, Renew. Sustain. Energy Rev., 2015, 45, pp. 343350.
    23. 23)
      • 2. U.S. Dept. Energy: ‘Benefits of demand response in electricity markets and recommendations for achieving them’. Report to the United States Congress, Washington, DC, USA, February2006.
    24. 24)
      • 19. Sadeghi, M., Shavvalpour, S.: ‘Energy risk management and value at risk modeling’, Energy Policy, 2006, 34, (18), pp. 33673373.
    25. 25)
      • 20. Baringo, L., Conejo, A.J.: ‘Risk-constrained multi-stage wind power investment’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 401411.
    26. 26)
      • 21. Garcia-Bertrand, R.: ‘Sale prices setting tool for retailers’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 20282035.
    27. 27)
      • 35. Abdollahi, A., Parsa Moghaddam, M., Rashidinejad, M., et al: ‘Investigation of economic and environmental-driven demand response measures incorporating UC’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 1225.
    28. 28)
      • 11. Amjady, N., Aghaei, J., Shayanfar, H.A.: ‘Stochastic multiobjective market clearing of joint energy and reserves auctions ensuring power system security’, IEEE Trans. Power Syst., 2009, 24, pp. 18411854.
    29. 29)
      • 31. Morales, J.M., Conejo, A.J., Perez-Ruiz, J.: ‘Short-term trading for a wind power producer’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 554564.
    30. 30)
      • 14. Moghaddam, I.G., Nick, M., Fallahi, F., et al: ‘Risk-averse profit-based optimal operation strategy of a combined wind farm-cascade hydro system in an electricity market’, Renew. Energy, 2013, 55, pp. 252259.
    31. 31)
      • 28. Kendall, M., Stuart, A.: ‘The advanced theory of statistics’ (Macmillan Publishing Co., 1977).
    32. 32)
      • 16. Kamezi, M., Mohammadi-Ivatloo, B., Ehsan, M.: ‘Risk-constrained strategic bidding of GenCos considering demand response’, IEEE Trans. Power Syst., 2014, 26, (3), pp. 13671378.
    33. 33)
      • 7. Anvari-Moghaddam, A., Rahimi-Kian, A., Monsef, H.: ‘Optimal smart home energy management considering energy saving and a comfortable lifestyle’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 324332.
    34. 34)
      • 26. Wu, L., Shahidehpour, M., Li, T.: ‘Cost of reliability analysis based on stochastic unit commitment’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13641374.
    35. 35)
      • 34. Vahedipour-Dahraie, M., Rashidizaheh-Kermani, H., Najafi, H.R., et al: ‘Coordination of EVs participation for load frequency control in isolated microgrids’, Appl. Sci., 2017, 7, p. 539, doi: 10.3390/app7060539.
    36. 36)
      • 4. Yang, S., Zeng, D., Ding, H.C., et al: ‘Stochastic security-constrained economic dispatch for random responsive price-elastic load and wind power’, IET Renew. Power Gener., 2016, 10, (7), pp. 936943.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0168
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0168
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address