http://iet.metastore.ingenta.com
1887

Effective prediction model for Hungarian small-scale solar power output

Effective prediction model for Hungarian small-scale solar power output

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Owing to critical role of photovoltaic (PV) power in oncoming energy market, an accurate PV power forecasting model is demanded. In this paper, an effective solar power prediction model composed of variational mode decomposition, information-theoretic feature selection, and forecasting engine with high learning capability is proposed. The feature selection method is based on information-theoretic criteria and an optimisation algorithm. The forecasting engine is multilayer perceptron neural network equipped with modified Levenberg–Marquardt learning algorithm. An evolutionary algorithm is also incorporated into the training mechanism of the forecasting engine to enhance its learning capability. Effectiveness of the proposed PV prediction model is illustrated on a Hungarian solar power plant.

References

    1. 1)
      • A. Chikh , A. Chandra .
        1. Chikh, A., Chandra, A.: ‘Adaptive neuro-fuzzy based solar cell model’, IET Renew. Power Gener., 2013, 8, (6), pp. 679686, doi: 10.1049/iet-rpg.2013.0183.
        . IET Renew. Power Gener. , 6 , 679 - 686
    2. 2)
      • A.G. Diyaf , R.R. Mather , J.I.B. Wilson .
        2. Diyaf, A.G., Mather, R.R., Wilson, J.I.B.: ‘Contacts on polyester textile as a flexible substrate for solar cells’, IET Renew. Power Gener., 2013, 8, (5), pp. 444450, doi: 10.1049/iet-rpg.2013.0236.
        . IET Renew. Power Gener. , 5 , 444 - 450
    3. 3)
      • P. Mathiesen , J.M. Brown , J. Kleissl .
        3. Mathiesen, P., Brown, J.M., Kleissl, J.: ‘Geostrophic wind dependent probabilistic irradiance forecasts for coastal California’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 510518.
        . IEEE Trans. Sustain. Energy , 2 , 510 - 518
    4. 4)
      • E. Geraldi , F. Romano , E. Ricciardelli .
        4. Geraldi, E., Romano, F., Ricciardelli, E.: ‘An advanced model for the estimation of the surface solar irradiance under all atmospheric conditions using MSG/SEVIRI data’, IEEE Trans. Geosci. Remote Sens., 2009, 2, (1), pp. 210.
        . IEEE Trans. Geosci. Remote Sens. , 1 , 2 - 10
    5. 5)
      • H. Cheng , W. Cao , P. Ge .
        5. Cheng, H., Cao, W., Ge, P.: ‘Forecasting research of long-term solar irradiance and output power for photovoltaic generation system, computational and information sciences (ICCIS)’. 2012 Fourth Int. Conf., 17–19 August 2012.
        . 2012 Fourth Int. Conf.
    6. 6)
      • I. Colak , M. Yesilbudak , N. Genc .
        6. Colak, I., Yesilbudak, M., Genc, N., et al: ‘Multi-period prediction of solar radiation using ARMA and ARIMA models machine learning and applications (ICMLA)’. 2015 IEEE 14th Int. Conf., 9–11 December 2015.
        . 2015 IEEE 14th Int. Conf.
    7. 7)
      • Y. Li , Y. Su , L. Shu .
        7. Li, Y., Su, Y., Shu, L.: ‘An ARMAX model for forecasting the power output of a grid connected photovoltaic system’, Renew. Energy, 2014, 66, pp. 7889.
        . Renew. Energy , 78 - 89
    8. 8)
      • S. Al-Alawi , H. Al-Hinai .
        8. Al-Alawi, S., Al-Hinai, H.: ‘An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation’, Renew. Energy, 1998, 14, (14), pp. 199204.
        . Renew. Energy , 14 , 199 - 204
    9. 9)
      • G. Reikard .
        9. Reikard, G.: ‘Predicting solar radiation at high resolutions: a comparison of time series forecasts’, Sol. Energy, 2009, 83, (3), pp. 342349.
        . Sol. Energy , 3 , 342 - 349
    10. 10)
      • N. Zhang , P.K. Behera .
        10. Zhang, N., Behera, P.K.: ‘Solar radiation prediction based on recurrent neural networks trained by Levenberg–Marquardt back propagation learning algorithm’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, pp. 17.
        . 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) , 1 - 7
    11. 11)
      • K.Y. Bae , H.S. Jang , D.K. Sung .
        11. Bae, K.Y., Jang, H.S., Sung, D.K.: ‘Hourly solar irradiance prediction based on support vector machine and its error analysis’, IEEE Trans. Power Syst., 2017, doi: 10.1109/TPWRS.2016.2569608.
        . IEEE Trans. Power Syst.
    12. 12)
      • Z. Ramedani , M. Omid , A. Keyhani .
        12. Ramedani, Z., Omid, M., Keyhani, A., et al: ‘Potential of radial basis function based support vector regression for global solar radiation prediction’, Renew. Sustain. Energy Rev., 2014, 39, pp. 10051011.
        . Renew. Sustain. Energy Rev. , 1005 - 1011
    13. 13)
      • M. Fidan , F.O. Hocaoğlu , Ö.N. Gerek .
        13. Fidan, M., Hocaoğlu, F.O., Gerek, Ö.N.: ‘Harmonic analysis based hourly solar radiation forecasting model’, IET Renew. Power Gener., 2015, 9, (3), pp. 218227.
        . IET Renew. Power Gener. , 3 , 218 - 227
    14. 14)
      • M.A.F.B. Lima , P.C.M. Carvalho , T.C. Carneiro .
        14. Lima, M.A.F.B., Carvalho, P.C.M., Carneiro, T.C., et al: ‘Portfolio theory applied to solar and wind resources forecast’, IET Renew. Power Gener., 2017, 11, pp. 973978.
        . IET Renew. Power Gener. , 973 - 978
    15. 15)
      • J. Li , J.K. Ward , J. Tong .
        15. Li, J., Ward, J.K., Tong, J., et al: ‘Machine learning for solar irradiance forecasting of photovoltaic system’, Renew. Energy, 2016, 90, pp. 542553.
        . Renew. Energy , 542 - 553
    16. 16)
      • S. Quaiyum , S. Rahman , S. Rahman .
        16. Quaiyum, S., Rahman, S., Rahman, S.: ‘Application of artificial neural network in forecasting solar irradiance and sizing of photovoltaic cell for standalone systems in Bangladesh’, Int. J. Comput. Appl., 2011, 32, (10), pp. 5156.
        . Int. J. Comput. Appl. , 10 , 51 - 56
    17. 17)
      • A. Mellit , S.A. Kalogirou , M. Drif .
        17. Mellit, A., Kalogirou, S.A., Drif, M.: ‘Application of neural networks and genetic algorithms for sizing of photovoltaic systems’, Renew. Energy, 2010, 35, (12), pp. 28812893.
        . Renew. Energy , 12 , 2881 - 2893
    18. 18)
      • A. Mellit , A.M. Pavan .
        18. Mellit, A., Pavan, A.M.: ‘A 24 h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Triest, Italy’, Sol. Energy, 2010, 84, (5), pp. 807821.
        . Sol. Energy , 5 , 807 - 821
    19. 19)
      • A. Mellit , M. Benghanem , M. Bendekhis .
        19. Mellit, A., Benghanem, M., Bendekhis, M.: ‘Artificial neural network model for prediction solar radiation data: application for sizing stand-alone photovoltaic power system’. Proc. IEEE Power Engineering Society, General Meeting, 2005, vol. 1, pp. 4044.
        . Proc. IEEE Power Engineering Society, General Meeting , 40 - 44
    20. 20)
      • A. Sfetsos , A.H. Coonick .
        20. Sfetsos, A., Coonick, A.H.: ‘Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques’, Sol. Energy, 2000, 68, (2), pp. 169178.
        . Sol. Energy , 2 , 169 - 178
    21. 21)
      • F.O. Hocaoglu , O.N. Gerek , M. Kurban .
        21. Hocaoglu, F.O., Gerek, O.N., Kurban, M.: ‘A novel 2d model approach for the prediction of hourly solar radiation’, in Proceedings of DBLP Conference: Computational and Ambient Intelligence, 9th International Work-Conference on Artificial Neural Networks (IWANN 2007), June 20–22 2007, San Sebastiân, Spain, doi: 10.1007/978-3-540-73007-1_90.
        . Proceedings of DBLP Conference: Computational and Ambient Intelligence, 9th International Work-Conference on Artificial Neural Networks (IWANN 2007)
    22. 22)
      • E.B. Ssekulima , M.B. Anwar , A. Al Hinai .
        22. Ssekulima, E.B., Anwar, M.B., Al Hinai, A., et al: ‘Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 885989.
        . IET Renew. Power Gener. , 7 , 885 - 989
    23. 23)
      • J. Cao , X. Lin .
        23. Cao, J., Lin, X.: ‘Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks’, Energy Convers. Manage., 2008, 49, (6), pp. 13961406.
        . Energy Convers. Manage. , 6 , 1396 - 1406
    24. 24)
      • M. Chaabene , M.B. Ammar .
        24. Chaabene, M., Ammar, M.B.: ‘Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems’, Renew. Energy, 2008, 33, (7), pp. 14351443.
        . Renew. Energy , 7 , 1435 - 1443
    25. 25)
      • A.U. Haque , M.H. Nehrir , P. Mandal .
        25. Haque, A.U., Nehrir, M.H., Mandal, P.: ‘Solar PV power generation forecast using a hybrid intelligent approach’. Power and Energy Society General Meeting (PES), July 2013, pp. 15.
        . Power and Energy Society General Meeting (PES) , 1 - 5
    26. 26)
      • P. Mandal , S.T.S. Madhira , A.U. Haque .
        26. Mandal, P., Madhira, S.T.S., Haque, A.U., et al: ‘Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques’, Procedia Comput. Sci., 2012, 12, pp. 332337.
        . Procedia Comput. Sci. , 332 - 337
    27. 27)
      • H. Nazaripouya , B. Wang , Y. Wang .
        27. Nazaripouya, H., Wang, B., Wang, Y., et al: ‘Univariate time series prediction of solar power using a hybrid wavelet-ARMA-NARX prediction method’. 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D), July 2016.
        . 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D)
    28. 28)
      • K. Dragomiretskiy , D. Zosso .
        28. Dragomiretskiy, K., Zosso, D.: ‘Variational mode decomposition’, IEEE Trans. Signal Process., 2014, 62, (3), pp. 531544.
        . IEEE Trans. Signal Process. , 3 , 531 - 544
    29. 29)
      • M.R. Hestenes .
        29. Hestenes, M.R.: ‘Multiplier and gradient methods’, J. Optim. Theory Appl., 1969, 4, (5), pp. 303320.
        . J. Optim. Theory Appl. , 5 , 303 - 320
    30. 30)
      • D.P. Bertsekas . (1982)
        30. Bertsekas, D.P.: ‘Constrained optimization and Lagrange multiplier methods’, in (EDs.): ‘Computer science and applied mathematics’, vol. 1 (Academic, Boston, MA, USA, 1982).
        .
    31. 31)
      • O. Abedinia , N. Amjady , H. Zareipour .
        31. Abedinia, O., Amjady, N., Zareipour, H.: ‘A new feature selection technique for load and price forecast of electrical power systems’, IEEE Trans. Power Syst., 2017, 32, pp. 6274.
        . IEEE Trans. Power Syst. , 62 - 74
    32. 32)
      • O. Abedinia , N. Amjady , A. Ghasemi .
        32. Abedinia, O., Amjady, N., Ghasemi, A.: ‘A new meta-heuristic algorithm based on shark smell optimization’, Complexity J., 2014, 21, pp. 97116.
        . Complexity J. , 97 - 116
    33. 33)
      • D.K. Tasoulis , N. Pavlidis , V.P. Plagianakos .
        33. Tasoulis, D.K., Pavlidis, N., Plagianakos, V.P., et al: ‘Parallel differential evolution’. Proc. IEEE Congress Evolution Computation, June 2004, vol. 2, pp. 20232029.
        . Proc. IEEE Congress Evolution Computation , 2023 - 2029
    34. 34)
      • K.N. Kozlov , A.M. Samsonov .
        34. Kozlov, K.N., Samsonov, A.M.: ‘A new migration scheme for parallel differential evolution’. Proc. Fifth Int. Conf. BGRS, July 2006, pp. 141144.
        . Proc. Fifth Int. Conf. BGRS , 141 - 144
    35. 35)
      • 35. http://nord-point.hu/napelem/aktualis-termeles/, accessed December 2016.
        .
    36. 36)
      • 36. University of Oregon solar radiation monitoring laboratory website. March 2012. Available at http://solardat.uoregon.edu/, accessed December 2016.
        .
    37. 37)
      • 37. Weather data website. March 2012. Available at http://wunderground.com/, accessed December 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0165
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0165
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address