Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dynamic reactive power optimal allocation to decrease wind power curtailment in a large-scale wind power integration area

Autonomous voltage security regions (AVSRs) have been proposed to prevent cascading trip faults in wind farms. However, due to insufficient dynamic reactive power (DRP) support and unreasonable DRP allocation in large-scale, centralised wind power integration areas, especially for high wind power penetrations, AVSRs may be too small to guarantee secure wind farm operation, resulting in large amounts of wind power curtailment. DRP allocation is crucial for wind farms to accommodate more wind power and decrease curtailment. Therefore, a DRP allocation scheme based on the AVSR to accommodate more wind power is proposed in this work. An improved AVSR considering wind power curtailment is first derived; the function between the AVSR, DRP reserves and curtailment is then obtained, and an optimal DRP allocation scheme using Benders decomposition is finally proposed. Good performance is observed when tested on a real large-scale wind power base in Northern China.

References

    1. 1)
      • 12. Leonardi, B., Ajjarapu, V.: ‘An approach for real time voltage stability margin control via reactive power reserve sensitivities’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 615625.
    2. 2)
      • 2. Niu, T., Guo, Q., Sun, H., et al: ‘Autonomous voltage security region to prevent cascading trip faults of wind turbine generators’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 13061316.
    3. 3)
      • 18. http://motor.ece.iit.edu/ms/benders.pdf.
    4. 4)
      • 5. Wibowo, R.S., Yorino, N., Eghbal, M., et al: ‘Facts devices allocation with control coordination considering congestion relief and voltage stability’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 23022310.
    5. 5)
      • 3. Ghahremani, E., Kamwa, I.: ‘Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 764778.
    6. 6)
      • 8. Qi, J., Huang, W., Sun, K., et al: ‘Optimal placement of dynamic Var sources by using empirical controllability covariance’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 240249.
    7. 7)
      • 16. Heitsch, H., Römisch, W.: ‘Scenario reduction algorithms in stochastic programming’, Comput. Optim. Appl., 2003, 24, (2), pp. 187206.
    8. 8)
      • 17. Dupacova, J., Growe-Kuska, N., Romisch, W.: ‘Scenario reduction in stochastic programming-an approach using probability metrics’, Math. Program., 2003, 95, (2), pp. 493511.
    9. 9)
      • 9. Tiwari, A., Ajjarapu, V.: ‘Optimal allocation of dynamic var support using mixed integer dynamic optimization’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 305314.
    10. 10)
      • 14. Boyd, S., Vanderberghe, L.: ‘Convex Optimization’ (Cambridge University Press, 2004).
    11. 11)
      • 11. Capitanescu, F.: ‘Assessing reactive power reserves with respect to operating constraints and voltage stability’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 22242234.
    12. 12)
      • 6. Wildenhues, S., Rueda, J.L., Erlich, I.: ‘Optimal allocation and sizing of dynamic var sources using heuristic optimization’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25382546.
    13. 13)
      • 4. Minguez, R., Milano, F., Zárate-Miñano, R., et al: ‘Optimal network placement of SVC devices’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 18511860.
    14. 14)
      • 1. Guo, Q., Sun, H., Wang, B., et al: ‘Hierarchical automatic voltage control for integration of large-scale wind power: design and implementation’, Elect. Power Syst. Res., 2015, 120, pp. 234241.
    15. 15)
      • 13. Niu, T., Guo, Q., Sun, H., et al: ‘Voltage security regions considering wind power curtailment to prevent cascading trip faults in wind power integration areas’, IET Renew. Power. Gener., 2017, 11, (1), pp. 5462.
    16. 16)
      • 7. Sapkota, B., Vittal, V.: ‘Dynamic VAr planning in a large power system using trajectory sensitivities’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 461469.
    17. 17)
      • 10. Tiwari, A., Ajjarapu, V.: ‘A computer package for multi-contingency constrained reactive power planning’. IEEE Power & Energy Society General Meeting, July 2015, pp. 15.
    18. 18)
      • 15. Bertsekas, D.P.: ‘Nonlinear programming’ (Athena Scientific, 1999, 2nd edn).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0144
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address