access icon free Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine – controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed–power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

Inspec keywords: angular velocity control; power convertors; power generation control; wind turbines

Other keywords: turbulence; CART3; inertial control method; fatigue; large-scale wind power integration; IEEE 14-bus power grid; WSCC 9-bus; turbine speed-power plane; research turbine; shaped active power reference; kinetic energy; aerodynamic; controls advanced RT; primary frequency response; variable-speed wind turbines; degraded power system inertia; structures

Subjects: Power engineering computing; Power and plant engineering (mechanical engineering); Wind power plants; Fluid mechanics and aerodynamics (mechanical engineering); Control of electric power systems; Velocity, acceleration and rotation control

References

    1. 1)
      • 16. Jonkman, J.M., Buhl, M.L.J.: ‘FAST user'S guide’. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, NREL/EL-500–38230, 2005.
    2. 2)
      • 8. Kang, M., Kim, K., Muljadi, E., et al: ‘Frequency control support of a doubly-fed induction generator based on the torque limit’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 45754583.
    3. 3)
      • 10. Gautam, D., Goel, L., Ayyanar, R., et al: ‘Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 214224.
    4. 4)
      • 17. Jonkman, B.J., Buhl, M.L.J.: ‘TurbSim user'S guide’. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, NREL/TP-500–41136, 2007.
    5. 5)
      • 29. Hwang, M., Muljadi, E., Park, J.W., et al: ‘Dynamic droop–based inertial control of a doubly-fed induction generator’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 924933.
    6. 6)
      • 23. Singh, M., Muljadi, E., Jonkman, J., et al: ‘Simulation for wind turbine generators – with FAST and MATLAB/Simulink modules’. Technical Report, NREL/TP-5D00-59195, National Renewable Energy Laboratory (NREL), Golden, CO, 2014.
    7. 7)
      • 13. Itani, S.E., Anakkage, U.D., Joos, G.: ‘Short-term frequency support utilizing inertial response of DFIG wind turbines’. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, 2011, pp. 18.
    8. 8)
      • 25. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems: modeling, control, and application’ (John Wiley & Sons, 2010).
    9. 9)
      • 24. Muljadi, E., Butterfield, C.P., Ellis, A., et al: ‘Equivalencing the collector system of a large wind power plant’. 2006 IEEE Power and Energy Society General Meeting, Montreal, Quebec, 2006, pp. 19.
    10. 10)
      • 11. Lee, J., Muljadi, E., Sorensen, P., et al: ‘Releasable kinetic energy-based inertial control of a DFIG wind power plant’, IEEE Trans. Sustain. Energy, 7, (1), pp. 279288.
    11. 11)
      • 18. Frost, S.A., Balas, M.J., Wright, A.D.: ‘Direct adaptive control of a utility-scale wind turbine for speed regulation’, Int. J. Robust Nonlinear Control, 2009, 19, (1), pp. 5971.
    12. 12)
      • 7. Fleming, P.A., Aho, J., Buckspan, A., et al: ‘Effects of power reserve control on wind turbine structural loading’, Wind Energy, 2015, 19, (3), pp. 453469.
    13. 13)
      • 3. Wu, B., Lang, Y., Zargari, N.: ‘Power conversion and control of wind energy systems’ (Wiley-Blackwell, an imprint of John Wiley & Sons Ltd., Oxford, United Kingdom, 2011).
    14. 14)
      • 28. Building a LabVIEW user interface for a Simulink model with LabVIEW simulation interface toolkit. Available at http://www.ni.com/white-paper/3057/en/, accessed January 2017.
    15. 15)
      • 22. Wright, A.D.: ‘Modern control design for flexible wind turbines’. Technical Report, NREL/TP-500-35816, National Renewable Energy Laboratory (NREL), Golden, CO, 2004.
    16. 16)
      • 9. Zhang, Z., Sun, Y., Lin, J., et al: ‘Coordinated frequency regulation by doubly fed induction generator-based wind power plants’, IET Renew. Power Gener., 2012, 6, (1), p. 38.
    17. 17)
      • 6. Gevorgian, V., Zhang, Y., Ela, E.: ‘Investigating the impacts of wind generation participation in interconnection frequency response’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 10041012.
    18. 18)
      • 31. Kodsi, S.M., Canizares, C.A.: ‘Modeling and simulation of IEEE 14 bus system with FACTs controllers’. Technical Report, University of Waterloo, Canada, 2003.
    19. 19)
      • 4. Johnson, K.E., Pao, L.Y., Balas, M.J., et al: ‘Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture’, IEEE Control Syst. Mag., 2006, 26, (3), pp. 7081.
    20. 20)
      • 15. Eto, J.H.: ‘Use of frequency response metrics to assess the planning and operating requirements for reliable integration of variable renewable generation’, Lawrence Berkeley National Laboratory Report, LBNL-4142E, 2010.
    21. 21)
      • 1. ‘Wind power’ from Wikipedia. Available at https://en.-wikipedia.org/wiki/Wind_power, accessed January 2017.
    22. 22)
      • 2. Muljadi, E., Gevorgian, V., Singh, M., et al: ‘Understanding inertial and frequency response of wind power plants’. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, NREL/CP-5500-55335.
    23. 23)
      • 5. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, (2), pp. 123138.
    24. 24)
      • 21. Hayman, G.J., Buhl, M.Jr.: ‘MLife user's guide for version 1.00’. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, 2012.
    25. 25)
      • 26. Jeon, J.H., Kim, J.Y., Kim, H.M., et al: ‘Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29192929.
    26. 26)
      • 14. Kang, M., Muljadi, E., Hur, K., et al: ‘Stable adaptive inertial control of a doubly-fed induction generator’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 29712979.
    27. 27)
      • 12. Wang, X., Gao, W., Wang, J., et al: ‘Inertial response of wind power plants: a comparison of frequency-based inertial control and stepwise inertial control’. North American Power Symp. (NAPS), Denver, Colorado, 2016, pp. 16.
    28. 28)
      • 19. Wu, Z., Gao, W., Wang, X., et al: ‘Improved inertial control for permanent magnet synchronous generator wind turbine generators’, IET Renew. Power Gener., 2016, 10, (9), pp. 13661373.
    29. 29)
      • 27. Singh, M., Santoso, S.: ‘Dynamic models for wind turbines and wind power plants’. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, NREL/SR-5500-52780, 2011.
    30. 30)
      • 20. Fadaeinedjad, R., Moallem, M., Moschopoulos, G., et al: ‘Simulation of a wind turbine with doubly fed induction generator by FAST and Simulink’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 690700.
    31. 31)
      • 30. Ullah, N.R., Thiringer, T., Karlsson, D.: ‘Temporary primary frequency control support by variable speed wind turbines – potential and applications’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 601612.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0123
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading