access icon free Challenges, advances and future directions in protection of hybrid AC/DC microgrids

Hybrid microgrids which consist of AC and DC subgrids interconnected by power electronic interfaces have attracted much attention in recent years. They not only can integrate the main benefits of both AC and DC configurations, but also can reduce the number of converters in connection of distributed generation sources, energy storage systems and loads to AC or DC buses. In this study, the structure of hybrid microgrids is discussed, and then a broad overview of the available protection devices and approaches for AC and DC subgrids is presented. After description, analysis and classification of the existing schemes, some research directions including communication infrastructures, combined control and protection schemes, and promising devices for the realisation of future hybrid AC/DC microgrids are pointed out.

Inspec keywords: distributed power generation; power generation protection

Other keywords: protection devices; hybrid AC-DC microgrid protection; AC buses; AC subgrids; distributed generation sources; DC buses; converters; power electronic interfaces; DC subgrids; energy storage systems

Subjects: Protection apparatus; Distributed power generation

References

    1. 1)
      • 63. Brearley, B.J., Prabu, R.R.: ‘A review on issues and approaches for microgrid protection’, Renew. Sustain. Energy Rev., 2017, 67, pp. 988997.
    2. 2)
      • 87. Al-Omar, B., Al-Ali, A.: ‘Role of information and communication technologies in the smart grid’, J. Emerg. Trends Comput. Inf. Sci., 2012, 3, (5), pp. 707716.
    3. 3)
      • 40. Yuan, C., Haj-Ahmed, M.A., Illindala, M.: ‘Protection strategies for medium voltage direct current microgrid at a remote area mine site’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 28462853.
    4. 4)
      • 50. Ustun, S.T.: ‘Design and development of a communication assisted microgrid protection system’. PhD thesis, School of Engineering and Science, Faculty of Health, Engineering and Science, Victoria University, 2013.
    5. 5)
      • 36. Dragičević, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids – Part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    6. 6)
      • 31. Ibrahem, A., Elrayyah, A., Sozer, Y., et al: ‘DC railway system emulator for stray current and touch voltage prediction’, IEEE Trans. Ind. Appl., 2016, 53, (1), pp. 439446.
    7. 7)
      • 90. Gopalakrishnan, A., Biswal, A.C.: ‘Applications of emerging communication trends in automation’. 2016 IEEE 6th Int. Conf. Power Systems (ICPS), New Delhi, India, 2016, pp. 27.
    8. 8)
      • 51. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Fault current coefficient and time delay assignment for microgrid protection system with central protection unit’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 598606.
    9. 9)
      • 8. Lotfi, H., Khodaei, A.: ‘Hybrid AC/DC microgrid planning’, IEEE Trans. Power Syst., 2016, 8, (1), pp. 296304.
    10. 10)
      • 20. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    11. 11)
      • 12. Planas, E., Andreu, J., Gárate, J.I., et al: ‘AC and DC technology in microgrids: a review’, Renew. Sustain. Energy Rev., 2015, 43, pp. 726749.
    12. 12)
      • 72. Kar, S., Samantaray, S.R.: ‘High impedance fault detection in microgrid using maximal overlapping discrete wavelet transform and decision tree’. Int. Conf. Electrical Power and Energy Systems (ICEPES), Bhopal, India, 2016, pp. 258263.
    13. 13)
      • 14. Papadimitriou, C.N., Zountouridou, E.I., Hatziargyriou, N.D.: ‘Review of hierarchical control in DC microgrids’, Electr. Power Syst. Res., 2015, 122, pp. 159167.
    14. 14)
      • 61. Mirsaeidi, S., Mat Said, D., Mustafa, M.W., et al: ‘A protection strategy for micro-grids based on positive-sequence component’, IET Renew. Power Gener., 2015, 9, (6), pp. 600609.
    15. 15)
      • 10. Cintuglu, M.H., Ma, T., Mohammed, O.A.: ‘Protection of autonomous microgrids using agent-based distributed communication’, IEEE Trans. Power Deliv., 2016, 32, (1), pp. 351360.
    16. 16)
      • 6. Justo, J.J., Mwasilu, F., Lee, J., et al: ‘AC-microgrids versus DC-microgrids with distributed energy resources: a review’, Renew. Sustain. Energy Rev., 2013, 24, pp. 387405.
    17. 17)
      • 66. Kar, S., Samantaray, S.R.: ‘Time-frequency transform-based differential scheme for microgrid protection’, IET Gener. Transm. Distrib., 2014, 8, (2), pp. 310320.
    18. 18)
      • 75. Li, X., Dyśko, A., Burt, G.: ‘Enhanced protection for inverter dominated microgrid using transient fault information’. 11th IET Int. Conf. Developments in Power Systems Protection (DPSP 2012), Birmingham, UK, 2012, pp. 15.
    19. 19)
      • 64. Dewadasa, M.: ‘Protection for distributed generation interfaced networks’. PhD thesis, Faculty of Built Environment and Engineering, Queensland University of Technology, 2010.
    20. 20)
      • 77. Lee, C.H., Lu, C.J.: ‘Assessment of grounding schemes on rail potential and stray currents in a DC transit system’, IEEE Trans. Power Deliv., 2006, 21, (4), pp. 19411947.
    21. 21)
      • 43. Gregory, G.D.: ‘Applying low voltage circuit breakers in direct current systems’. Proc. of 1994 IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, 1994, pp. 22932302.
    22. 22)
      • 1. Das, K., Nitsas, A., Altin, M., et al: ‘Improved load-shedding scheme considering distributed generation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 515524.
    23. 23)
      • 71. Mishra, D.P., Samantaray, S.R., Joos, G.: ‘A combined wavelet and data-mining based intelligent protection scheme for microgrid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22952304.
    24. 24)
      • 13. Nassar, M.E., Salama, M.M.A.: ‘A novel branch-based power flow algorithm for islanded AC microgrids’, Electr. Power Syst. Res., 2017, 146, pp. 5162.
    25. 25)
      • 19. Unamuno, E., Barrena, J.A.: ‘Hybrid ac/dc microgrids – Part I: review and classification of topologies’, Renew. Sustain. Energy Rev., 2015, 52, pp. 12511259.
    26. 26)
      • 45. Liu, Y., Chen, D., Yuan, H., et al: ‘Research of dynamic optimization for the cam design structure of MCCB’, IEEE Trans. Compon. Packag. Manuf. Technol., 2016, 6, (3), pp. 390399.
    27. 27)
      • 56. Conti, S., Raffa, L., Vagliasindi, U.: ‘Innovative solutions for protection schemes in autonomous MV micro-grids’. 2009 Int. Conf. Clean Electrical Power, Capri, Italy, 2009, pp. 647654.
    28. 28)
      • 93. Hosseini, S.A., Abyaneh, H.A., Sadeghi, S.H.H., et al: ‘An overview of microgrid protection methods and the factors involved’, Renew. Sustain. Energy Rev., 2016, 64, pp. 174186.
    29. 29)
      • 30. Cotton, I., Charalambous, C., Aylott, P., et al: ‘Stray current control in DC mass transit systems’, IEEE Trans. Veh. Technol., 2005, 54, (2), pp. 722730.
    30. 30)
      • 74. Shi, S., Jiang, B., Dong, X., et al: ‘Protection of microgrid’. 10th IET Int. Conf. Developments in Power System Protection (DPSP 2010), Manchester, UK, 2010, pp. 14.
    31. 31)
      • 83. Salomonsson, D., Söder, L., Sannino, A.: ‘Protection of low-voltage DC microgrids’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    32. 32)
      • 34. Augusto, F., León, H., Manuel, J., et al: ‘Design and construction of a dynamic system for step and touch voltage measurements for grounding systems’. 2011 Int. Symp. Lightning Protection, Fortaleza, Brazil, 2011, pp. 278283.
    33. 33)
      • 11. Lai, K., Illindala, M.S., Haj-Ahmed, M.A.: ‘Comprehensive protection strategy for an Islanded microgrid using intelligent relays’, IEEE Trans. Ind. Appl., 2016, 8, (99), pp. 4755.
    34. 34)
      • 92. Beheshtaein, S., Savaghebi, M., Vasquez, J.C., et al: ‘Protection of AC and DC microgrids: challenges, solutions and future trends’. IECON 2015 – 41st Annual Conf. of the IEEE Industrial Electronics Society, Yokohama, Japan, 2015, pp. 52535260.
    35. 35)
      • 28. Paul, D.: ‘DC traction power system grounding’. 2001 IEEE Industry Applications Conf., 36th IAS Annual Meeting, Chicago, USA, 2001, pp. 21332139.
    36. 36)
      • 24. Bui, D.M., Chen, S.L., Lien, K.Y., et al: ‘Fault protection solutions appropriately used for ungrounded low-voltage AC microgrids’. Proc. 2015 IEEE Innovative Smart Grid Technologies – Asia, ISGT ASIA 2015, Bangkok, Thailand, 2016, pp. 40664071.
    37. 37)
      • 59. Nikkhajoei, H., Lasseter, R.H.: ‘Microgrid fault protection based on symmetrical and differential current components’, Consortium for Electric Reliability Technology Solutions, Contract No. 500-03-024, 2006.
    38. 38)
      • 73. Kanakasabapathy, P., Mohan, M.: ‘Digital protection scheme for microgrids using wavelet transform’. IEEE Int. Conf. Electron Devices and Solid-State Circuits (EDSSC), Singapore, 2015, pp. 664667.
    39. 39)
      • 2. Liao, H., Milanović, J.V.: ‘Methodology for the analysis of voltage unbalance in networks with single-phase distributed generation’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 550559.
    40. 40)
      • 25. Hussain, A., Aslam, M., Arif, S.M.: ‘N-version programming-based protection scheme for microgrids: a multi-agent system based approach’, Sustain. Energy Grids Netw., 2016, 6, pp. 3545.
    41. 41)
      • 15. Fei Gao, S.B., Alessandro, C., Chintan, P., et al: ‘Comparative stability analysis of droop control approaches in voltage source converters-based DC microgrids’, IEEE Trans. Power Electron., 2016, 32, (3), pp. 23952415.
    42. 42)
      • 18. Feng, W., Jet, T.K., Kaiyuan, L., et al: ‘Harmonic Mitigation of Hybrid AC/ DC Micro-grids with PMSG’. 5th IET Int. Conf. Renewable Power Generation (RPG) 2016, London, UK, 2016, pp. 15.
    43. 43)
      • 85. Fletcher, S.D.A., Norman, P.J., Galloway, S.J., et al: ‘Optimizing the roles of unit and non-unit protection methods within DC microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20792087.
    44. 44)
      • 9. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    45. 45)
      • 60. Zamani, M.A., Sidhu, T.S., Yazdani, A.: ‘A protection strategy and microprocessor-based relay for low-voltage microgrids’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 18731883.
    46. 46)
      • 89. Meliopoulos, A.P.S., Cokkinides, G., Huang, R., et al: ‘Smart grid technologies for autonomous operation and control’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 110.
    47. 47)
      • 69. Chen, Z., Pei, X., Peng, L.: ‘Harmonic components based protection strategy for inverter-interfaced AC microgrid’. IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 16.
    48. 48)
      • 76. Li, X., Dyśko, A., Burt, G.M.: ‘Traveling wave-based protection scheme for inverter-dominated microgrid using mathematical morphology’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 22112218.
    49. 49)
      • 39. Do Park, J., Candelaria, J., Ma, L., et al: ‘DC ring-bus microgrid fault protection and identification of fault location’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 779787.
    50. 50)
      • 49. Zheng, K.H., Xia, M.C.: ‘Impacts of microgrid on protection of distribution networks and protection strategy of microgrid’. 2011 Int. Conf. Advanced Power System Automation and Protection, Beijing, China, 2011, pp. 356359.
    51. 51)
      • 58. Dewadasa, M.: ‘Protection of microgrids using differential relays’. 21th Australasian Universities Power Engineering Conf. (AUPEC), Brisbane, Australia, 2011, pp. 16.
    52. 52)
      • 70. Saleh, S.A., Ahshan, R., Rahman, M.A., et al: ‘Implementing and testing d-q WPT-based digital protection for micro-grid systems’. IEEE Industry Applications Society Annual Meeting, Orlando, FL, 2011, pp. 18.
    53. 53)
      • 78. Tang, L., Ooi, B.T.: ‘Locating and isolating DC faults in multi-terminal DC systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 18771884.
    54. 54)
      • 54. Laaksonen, H., Ishchenko, D., Oudalov, A.: ‘Adaptive protection and microgrid control design for Hailuoto Island’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14861493.
    55. 55)
      • 68. Petit, M., Pivert, X. L., Santander, L.G.: ‘Directional relays without voltage sensors for distribution networks with distributed generation: use of symmetrical components’, Electr. Power Syst. Res., 2010, 80, pp. 12221228.
    56. 56)
      • 44. IEEE guide for the protection of stationary battery systems’, IEEE Standard 1375-1998’, 1998.
    57. 57)
      • 62. Singh, A.R., Dambhare, S.S.: ‘Adaptive distance protection of transmission line in presence of SVC’, Int. J. Electr. Power Energy Syst., 2013, 53, (1), pp. 7884.
    58. 58)
      • 57. Sortomme, E., Venkata, S.S., Mitra, J.: ‘Microgrid protection using communication-assisted digital relays’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27892796.
    59. 59)
      • 35. IEC 60364-1 Low-Voltage Electrical Installations – Part 1: Fundamental Principles, Assessment of General Characteristics, Definitions, IEC 60364-1, 2005.
    60. 60)
      • 29. Memon, S.A., Fromme, P.: ‘Stray current corrosion and mitigation: a synopsis of the technical methods used in dc transit systems’, IEEE Electrification Mag., 2014, 2, (3), pp. 2231.
    61. 61)
      • 33. Mitolo, M., Liu, H.: ‘Touch voltage analysis in low-voltage power systems studies’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 556559.
    62. 62)
      • 32. Niasati, M., Gholami, A.: ‘Overview of stray current control in DC railway systems’. 2008 Int. Conf. Railway Engineering – Challenges for Railway Transportation in Information Age, Hong Kong, China, 2008, pp. 16.
    63. 63)
      • 26. Meghwani, A., Srivastava, S., Chakrabarti, S.: ‘A non-unit protection scheme for DC microgrid based on local measurements’, IEEE Trans. Power Deliv., 2016, 32, (1), pp. 172181.
    64. 64)
      • 48. Sun, H., Rong, M., Chen, Z., et al: ‘Investigation on the arc phenomenon of air DC circuit breaker’, IEEE Trans. Plasma Sci., 2014, 42, (10), pp. 27062707.
    65. 65)
      • 88. Siow, L.K., So, P.L., Gooi, H.B., et al: ‘Wi-Fi based server in microgrid energy management system’. TENCON 2009 – 2009 IEEE Region 10 Conf., Singapore, 2009, pp. 15.
    66. 66)
      • 3. Pereira, B.R., da Costa, G.R.M., Contreras, J., et al: ‘Optimal distributed generation and reactive power allocation in electrical distribution systems’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 975984.
    67. 67)
      • 80. Meyer, C., Schroder, S., De Doncker, R.W.: ‘Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13331340.
    68. 68)
      • 91. Erol-Kantarci, M., Mouftah, H.T.: ‘Energy-efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues’, IEEE Commun. Surv. Tutor., 2015, 17, (1), pp. 179197.
    69. 69)
      • 65. Dewadasa, M., Majumder, R., Ghosh, A., et al: ‘Control and protection of a microgrid with converter interfaced micro sources’. 2009 Int. Conf. Power Systems, Kharagpur, India, 2009, pp. 16.
    70. 70)
      • 41. Sakagami, T.: ‘Simulation to optimize a DC microgrid in Okinawa’. 2016 IEEE Int. Conf. Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 2016, pp. 214219.
    71. 71)
      • 16. Tah, A., Das, D.: ‘An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected DC microgrids’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 11941204.
    72. 72)
      • 5. Gururani, A., Mohanty, S.R., Mohanta, J.C.: ‘Microgrid protection using Hilbert–Huang transform based-differential scheme’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37073716.
    73. 73)
      • 53. Etemadi, A.H., Iravani, R.: ‘Overcurrent and overload protection of directly voltage-controlled distributed resources in a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 56295638.
    74. 74)
      • 84. Corzine, K.A., Ashton, R.W.: ‘A new Z-source DC circuit breaker’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27962804.
    75. 75)
      • 55. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15601567.
    76. 76)
      • 47. Cuzner, R.M., Venkataramanan, G.: ‘The status of DC micro-grid protection’. 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, Alta, Canada, 2008, pp. 18.
    77. 77)
      • 52. Oudalov, A., Fidigatti, A.: ‘Adaptive network protection in micro- grids’, Int. J. Distrib. Energy Resour., 2009, 4, (3), pp. 201205.
    78. 78)
      • 82. Baran, M.E., Mahajan, N.R.: ‘Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 406412.
    79. 79)
      • 23. Choudhary, N.K., Mohanty, S.R., Singh, R.K.: ‘A review on microgrid protection’. 2014 Int. Electrical Engineering Congress (iEECON), Chonburi, Thailand, 2014, pp. 14.
    80. 80)
      • 22. Sahoo, A.K.: ‘Protection of microgrid through coordinated directional over-current relays’. 2014 IEEE Global Humanitarian Technology Conf. – South Asia Satellite (GHTC-SAS), Trivandrum, India, 2014, pp. 129134.
    81. 81)
      • 4. Jiayi, H., Chuanwen, J., Rong, X.: ‘A review on distributed energy resources and microgrid’, Renew. Sustain. Energy Rev., 2008, 12, (9), pp. 24652476.
    82. 82)
      • 67. Al-Nasseri, H., Redfern, M.A.: ‘Harmonics content based protection scheme for Micro-grids dominated by solid state converters’. 12th Int. Middle-East Power System Conf., Aswan, Egypt, 2008, pp. 5056.
    83. 83)
      • 37. Madingou, G., Zarghami, M., Vaziri, M.: ‘Fault detection and isolation in a DC microgrid using a central processing unit’. 2015 IEEE Power Energy Soc. Innovative Smart Grid Technologies Conf., Washington, DC, USA, 2015, pp. 15.
    84. 84)
      • 46. Ji, L., Chen, D., Liu, Y., et al: ‘Analysis and improvement of linkage transfer position for the operating mechanism of MCCB’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 222227.
    85. 85)
      • 42. Brozek, J.P.: ‘DC overcurrent protection - where we stand’. Conf. Record of the 1992 IEEE Industry Applications Society Annual Meeting, Houston, TX, USA, 1992, pp. 13061310.
    86. 86)
      • 79. Ciezki, J.G., Ashton, R.W.: ‘Selection and stability issues associated with a navy shipboard DC zonal electric distribution system’, IEEE Trans. Power Deliv., 2000, 15, (2), pp. 665669.
    87. 87)
      • 38. Becker, D.J., Sonnenberg, B.J.: ‘DC microgrids in buildings and data centers’. 2011 IEEE 33rd Int. Telecommunications Energy Conf. (INTELEC), Amsterdam, Netherlands, 2011, pp. 17.
    88. 88)
      • 27. Monadi, M., Gavriluta, C., Luna, A., et al: ‘Centralized protection strategy for medium voltage DC microgrids’, IEEE Trans. Power Deliv., 2016, 32, (1), pp. 430440.
    89. 89)
      • 17. Meng, L., Dragicevic, T., Roldan-Perez, J., et al: ‘Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 15041515.
    90. 90)
      • 7. Ragaini, E., Tironi, E., Grillo, S., et al: ‘Ground fault analysis of low voltage DC micro-grids with active front-end converter’. 3rd Renewable Power Generation Conf. (RPG 2014), Naples, Italy, 2014, pp. 16.
    91. 91)
      • 21. Liu, Z., Hoidalen, H.K., Saha, M.M.: ‘An intelligent coordinated protection and control strategy for distribution network with wind generation integration’, CSEE J. Power Energy Syst., 2016, 2, (4), pp. 2330.
    92. 92)
      • 81. Lawes, D.: ‘Design of a solid-state DC circuit breaker for light rail transit power supply network’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014, pp. 350357.
    93. 93)
      • 86. Khan, S.S.: ‘Modeling and operating strategies of microgrids for renewable energy communities’ (IQRA National University Peshawar, Peshawar, Pakistan, 2017), pp. 735760.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0079
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading