access icon openaccess Formulation and evaluation of long-term allocation problem for renewable distributed generations

The penetration rate of renewable energy into the power systems has been increasing in many countries. The governments and international energy organisations have announced the long-term visions such as power generation and penetration rate of renewable energy. However, the specific installation plans and scenarios have not been discussed and determined. Although plenty of researches related to optimal allocation problem of renewable energy-based distributed generations (DGs) have been proposed in past decade, most of the studies have considered only 1 year's allocation and daily annual system operation. Therefore, this study proposes a novel scenario-based two-stage stochastic programming problem for long-term allocation of DGs. Also, a scenario generation procedure is presented for solving the problem. Furthermore, few studies have focused on the evaluations and analyses of the optimal solutions in various aspects. Thus, this study shows the optimal allocation results on 34-bus distribution network, considering the different scenario generation methods and number of scenarios. The authors finally discuss the important points and indicate that decision makers have to consider several important issues. In addition, they developed and released a general-purpose framework for optimal allocation of DGs as an open source.

Inspec keywords: stochastic programming; distributed power generation; renewable energy sources; distribution networks

Other keywords: daily annual system operation; long-term allocation problem; general-purpose framework; penetration rate; 34-bus distribution network; power systems; scenario-based two-stage stochastic programming problem; governments; renewable energy-based distributed generations; scenario generation procedure; international energy organisations; power generation

Subjects: Distributed power generation; Optimisation techniques; Distribution networks; Energy resources

References

    1. 1)
      • 22. Mazidi, M., Zakariazadeh, A., Jadid, S., et al: ‘Integrated scheduling of renewable generation and demand response programs in a microgrid’, Energy Convers. Manage., 2014, 86, pp. 11181127.
    2. 2)
      • 18. Dupačová, J., Consigli, G., Wallace, S.W.: ‘Scenarios for multistage stochastic programs’, Ann. Oper. Res., 2000, 100, (1–4), pp. 2553.
    3. 3)
      • 4. Huang, K., Ahmed, S.: ‘The value of multistage stochastic programming in capacity planning under uncertainty’, Oper. Res., 2009, 57, (4), pp. 893904.
    4. 4)
      • 31. Lorenzo, E.: ‘Solar electricity: engineering of photovoltaic systems’ (Progensa, 1994).
    5. 5)
      • 21. Sadeghi, M., Kalantar, M.: ‘Multi types DG expansion dynamic planning in distribution system under stochastic conditions using covariance matrix adaptation evolutionary strategy and Monte-Carlo simulation’, Energy Convers. Manage., 2014, 87, pp. 455471, early access.
    6. 6)
      • 19. Baringo, L., Conejo, A.J.: ‘Wind power investment within a market environment’, Appl. Energy, 2011, 88, (9), pp. 32393247.
    7. 7)
      • 5. Baringo, L., Conejo, A.J.: ‘Risk-constrained multi-stage wind power investment’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 401411.
    8. 8)
      • 25. Montoya-Bueno, S., Muñoz-Hernández, J.I., Contreras, J.: ‘Uncertainty management of renewable distributed generation’, J. Clean Prod., 2016, 138, pp. 103118.
    9. 9)
      • 26. Nick, M., Cherkaoui, R., Paolone, M.: ‘Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23002310.
    10. 10)
      • 2. Payasi, R.P., Singh, A.K., Singh, D.: ‘Review of distributed generation planning: objectives, constraints, and algorithms’, Int. J. Eng. Sci. Technol., 2011, 3, (3), pp. 133153.
    11. 11)
      • 33. Chis, M., Salama, M.M.A., Jayaram, S.: ‘Capacitor placement in distribution systems using heuristic search strategies’, IEE Proc., Gener. Transm. Distrib., 1997, 144, (3), pp. 225230.
    12. 12)
      • 20. Baringo, L., Conejo, A.J.: ‘Correlated wind-power production and electric load scenarios for investment decisions’, Appl. Energy, 2013, 101, pp. 475482, early access.
    13. 13)
      • 10. Fu, X., Chen, H., Cai, R., et al: ‘Optimal allocation and adaptive VAR control of PV-DG in distribution networks’, Appl. Energy, 2015, 137, pp. 173182.
    14. 14)
      • 29. Asensio, M., de Quevedo, P.M., Munoz-Delgado, G., et al: ‘Joint Distribution Network and Renewable Energy Expansion Planning considering Demand Response and Energy Storage ̶ Part II: Numerical results and considered metrics’, IEEE Transactions on Smart Grid, 2016.
    15. 15)
      • 7. Verderame, P.M., Elia, J.A., Li, J., et al: ‘Planning and scheduling under uncertainty: a review across multiple sectors’, Ind. Eng. Chem. Res., 2010, 49, (9), pp. 39934017.
    16. 16)
      • 34. ‘Inc Gurobi 6.5.0, Gurobi optimization: user's manual’. Available at http://gams.comhelptopicgams.docsolversgurobiindex.html, accessed 07 January 2017.
    17. 17)
      • 9. Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
    18. 18)
      • 28. Asensio, M., de Quevedo, P.M., Munoz-Delgado, G., et al: ‘Joint distribution network and renewable energy expansion planning considering demand response and energy storage – part I: stochastic programming model’, IEEE Trans. Smart Grid, 2016.
    19. 19)
      • 13. Pereira, B.R., da Costa, G.R.M., Contreras, J., et al: ‘Optimal distributed generation and reactive power allocation in electrical distribution systems’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 975984.
    20. 20)
      • 30. MacQueen, J.: ‘Some methods for classification and analysis of multivariate observations’. Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability, June 1967, 1, (14), pp. 281297.
    21. 21)
      • 24. Nojavan, S., Allah Aalami, H.: ‘Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program’, Energy Convers. Manage., 2015, 103, pp. 10081018.
    22. 22)
      • 3. Jordehi, A.R.: ‘Allocation of distributed generation units in electric power systems: a review’, Renew. Sustain. Energy Rev., 2016, 56, pp. 893905.
    23. 23)
      • 11. Abdelaziz, A.Y., Hegazy, Y.G., El-Khattam, W., et al: ‘Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks’, Electr. Power Syst. Res., 2015, 119, pp. 3444.
    24. 24)
      • 12. Saif, A., Pandi, V.R., Zeineldin, H.H., et al: ‘Optimal allocation of distributed energy resources through simulation-based optimization’, Electr. Power Syst. Res., 2013, 104, pp. 18.
    25. 25)
      • 23. Seljom, P., Tomasgard, A.: ‘Short-term uncertainty in long-term energy system models – a case study of wind power in Denmark’, Energy Econ., 2015, 49, pp. 157167.
    26. 26)
      • 16. Wang, Z., Chen, B., Wang, J., et al: ‘Robust optimization based optimal DG placement in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 21732182.
    27. 27)
      • 6. Munoz, F.D., Hobbs, B.F., Watson, J.P.: ‘New bounding and decomposition approaches for MILP investment problems: multi-area transmission and generation planning under policy constraints’, Eur. J. Oper. Res., 2016, 248, (3), pp. 888898.
    28. 28)
      • 1. Eftekharnejad, S., Vittal, V., Heydt, G.T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    29. 29)
      • 27. Nick, M., Cherkaoui, R., Paolone, M.: ‘Optimal siting and sizing of distributed energy storage systems via alternating direction method of multipliers’, Int. J. Electr. Power Energy Syst., 2015, 72, pp. 3339.
    30. 30)
      • 15. Krukanont, P., Tezuka, T.: ‘Implications of capacity expansion under uncertainty and value of information: the near-term energy planning of Japan’, Energy, 2007, 32, (10), pp. 18091824.
    31. 31)
      • 14. Carvalho, P.M., Ferreira, L.A., Lobo, F.G., et al: ‘Distribution network expansion planning under uncertainty: a hedging algorithm in an evolutionary approach’. Power Industry Computer Applications, May 1997, pp. 1015.
    32. 32)
      • 8. Mavrotas, G., Demertzis, H., Meintani, A., et al: ‘Energy planning in buildings under uncertainty in fuel costs: the case of a hotel unit in Greece’, Energy Convers. Manage., 2003, 44, (8), pp. 13031321.
    33. 33)
      • 32. Zou, K., Agalgaonkar, A.P., Muttaqi, K.M., et al: ‘Multi-objective optimisation for distribution system planning with renewable energy resources’. 2010 IEEE Int. Energy Conf. and Exhibition (EnergyCon), December 2010, pp. 670675.
    34. 34)
      • 17. Montoya-Bueno, S., Muoz, J.I., Contreras, J.: ‘A stochastic investment model for renewable generation in distribution systems’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 14661474.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0068
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading