Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Maiden application of an sine–cosine algorithm optimised FO cascade controller in automatic generation control of multi-area thermal system incorporating dish-Stirling solar and geothermal power plants

The present study highlights an attempt of integrating the geothermal power plant (GTPP) in automatic generation control of an interconnected system comprising of dish-Stirling solar–thermal system (DSTS) and the conventional thermal system (TS). Generation rate constraints of 3%/min are considered for the TSs. A new fractional-order (FO) cascade controller named as FO proportional (P)–integral (I)–FOP–derivative (D) (FOPI–FOPD) is proposed as secondary controller and performance is compared with commonly used classical controllers. Controller gains and other parameters are optimised using a novel stochastic algorithm called sine–cosine algorithm. The analysis reveals the superiority of FOPI–FOPD over others. The effect of inclusion of GTPP and DSTS is also analysed on the conventional TS, both in a combined manner and separately. Sensitivity analysis reflects the robustness of optimum FOPI–FOPD controller gains and other parameters obtained at nominal and recommend that the optimised parameters do not suffer much deviations and are able to withstand wide fluctuations in system operating conditions, system loading and inertia constant. The dynamic behaviour of the system is studied with 1% step load perturbation in area1.

References

    1. 1)
      • 6. Sahu, R.K., Panda, S., Rout, U.K., et al: ‘Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller’, Int. J. Electr. Power Energy Syst., 2016, 31, (77), pp. 287301.
    2. 2)
      • 2. Ibraheem, Kumar, P., Kothari, D.P.: ‘Recent philosophies of automatic generation control strategies in power systems’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 346357.
    3. 3)
      • 27. Gonzalez, E.A., Dorčák, Ĺ., Monje, C., et al: ‘Conceptual design of a selectable fractional-order differentiator for industrial applications’, Fract. Calc. Appl. Anal., 2014, 17, (3), pp. 697716.
    4. 4)
      • 15. Nanda, J., Sreedhar, M., Dasgupta, A.: ‘A new technique in hydro thermal interconnected automatic generation control system by using minority charge carrier inspired algorithm’, Int. J. Electr. Power Energy Syst., 2015, 68, pp. 259268.
    5. 5)
      • 22. Yıldırım, Ö.N.: ‘Modeling, simulation and optimization of flashed-steam geothermal power plants from the point of view of no condensable gas removal systems’. PhD thesis, İzmir Institute of Technology, Turkey, 2010.
    6. 6)
      • 7. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2010, 4, (5), pp. 438457.
    7. 7)
      • 18. Dash, P., Saikia, L.C., Sinha, N.: ‘Flower pollination algorithm optimized PI–PD cascade controller in automatic generation control of a multi-area power system’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 1928.
    8. 8)
      • 1. Elgerd, O.I.: ‘Electric energy systems theory: an introduction’ (Tata McGraw-Hill, New Delhi, 1983, 2nd edn.).
    9. 9)
      • 14. Setel, A., Gordan, M., Antal, C., et al: ‘Use of geothermal energy to produce electricity at average temperatures’. 13th Int. Conf. Engineering of Modern Electric Systems (EMES), 2015.
    10. 10)
      • 16. Sahu, B.K., Pati, S., Mohanty, P.K., et al: ‘Teaching–learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system’, Appl. Soft Comput., 2015, 27, pp. 240249.
    11. 11)
      • 20. Raju, M., Saikia, L.C., Sinha, N.: ‘Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller’, Int. J. Electr. Power Energy Syst., 2016, 80, pp. 5263.
    12. 12)
      • 25. Ólafsson, Á.J.: ‘Verification of design models for geothermal power plants’. Master of science thesis, University of Iceland, 2014.
    13. 13)
      • 4. Nanda, J., Mishra, S., Saikia, L.C.: ‘Maiden application of bacterial foraging-based optimization technique in multi area automatic generation control’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 602609.
    14. 14)
      • 13. Buchta, J.: ‘Green power from conventional steam power plant combined with geothermal well’. IEEE Int. Conf. Industrial Technology ICIT 2009, 2009.
    15. 15)
      • 21. Mirjalili, S.: ‘SCA: a sine–cosine algorithm for solving optimization problems’, Knowl.-Based Syst., 2016, 96, pp. 120133.
    16. 16)
      • 26. Valerio, D., Costa, J.S.D.: ‘An introduction to fractional control’, vol. 91 (Institution of Engineering and Technology, London, UK, 2013).
    17. 17)
      • 10. Das, D.C., Sinha, N., Roy, A.K.: ‘Small signal stability analysis of dish-Stirling solar thermal based autonomous hybrid energy system’, Electr. Power Energy Syst., 2014, 63, pp. 485498.
    18. 18)
      • 11. Hossain, M.S., Madlool, N.A., Rahim, N.A., et al: ‘Role of smart grid in renewable energy: an overview’, Renew. Sustain. Energy Rev., 2016, 60, pp. 11681184.
    19. 19)
      • 12. Hammons, T.J.: ‘Geothermal power generation worldwide’. Power Tech Conf. Proc., Bologna, 2003.
    20. 20)
      • 8. Sharma, Y., Saikia, L.C.: ‘Automatic generation control of a multi-area ST – thermal power system using grey wolf optimizer algorithm based classical controllers’, Electr. Power Energy Syst., 2015, 73, pp. 853862.
    21. 21)
      • 9. Rahman, A., Saikia, L., Sinha, N.: ‘AGC of dish-Stirling solar thermal integrated thermal system with biogeography based optimised three degree of freedom PID controller’, IET Renew. Power Gener., 2016, 10, (8), pp. 11611170.
    22. 22)
      • 19. Dash, P., Saikia, L.C., Sinha, N.: ‘Automatic generation control of multi area thermal system using bat algorithm optimized PD–PID cascade controller’, Int. J. Electr. Power Energy Syst., 2015, 68, pp. 364372.
    23. 23)
      • 24. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1993).
    24. 24)
      • 3. Nanda, J., Kaul, B.L.: ‘Automatic generation control of an interconnected power system’, Proc. Inst. Electr. Eng., 1978, 125, (5), pp. 385390.
    25. 25)
      • 5. Saikia, L.C., Nanda, J., Mishra, S.: ‘Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 394401.
    26. 26)
      • 23. Heimisson, B.: ‘Improved frequency control strategies for geothermal power plants’. Master of science thesis, Chalmers University of Technology, Sweden, 2014.
    27. 27)
      • 17. Debbarma, S., Dutta, A.: ‘Utilizing electric vehicles for LFC in restructured power systems using fractional order controller’, IEEE Trans. on Smart Grid, 2017, 8, (6), pp. 25542564.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0063
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address