http://iet.metastore.ingenta.com
1887

Zone partitioning protection strategy for DC systems incorporating offshore wind farm

Zone partitioning protection strategy for DC systems incorporating offshore wind farm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a zone partitioning protection strategy for DC systems incorporating offshore wind farm. Regarding a DC system which consists of multiple local zones with radial topology, a multi-port DC hub is introduced to serve as firewall between different zones. By blocking the converter with DC fault blocking capability in the corresponding DC hub port, the fault can be prevented from spreading among zones. On the other hand, an inter-zone protection centre is designed and built in the DC hub to implement the continuous operation under the situation of any port outage. Furthermore, in every local zone, the hybrid DC circuit breaker is installed in each branch at the side near the star point in order to isolate the faulty branch quickly and selectively via installing the smoothing reactor at the other side to restrict the fault current. Especially, a zone protection centre is designed and built in the star point of each zone to implement the fault detection and fault isolation. A detailed model of the DC system with the proposed protection strategy is built under PSCAD/EMTDCTM environment. Simulation results under different operating conditions demonstrate the feasibility and validity of the proposed strategy.

References

    1. 1)
      • S.I. Nanou , S.A. Papathanassiou .
        1. Nanou, S.I., Papathanassiou, S.A.: ‘Grid code compatibility of VSC-HVDC connected offshore wind turbines employing power synchronization control’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 50425050.
        . IEEE Trans. Power Syst. , 6 , 5042 - 5050
    2. 2)
      • A. Moawwad , M.S. El Moursi , W. Xiao .
        2. Moawwad, A., El Moursi, M.S., Xiao, W.: ‘Advanced fault ride-through management scheme for VSC-HVDC connecting offshore wind farms’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 49234934.
        . IEEE Trans. Power Syst. , 6 , 4923 - 4934
    3. 3)
      • Z. Wang , K. Li , J. Ren .
        3. Wang, Z., Li, K., Ren, J., et al: ‘A coordination control strategy of voltage-source-converter-based MTDC for offshore wind farms’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 27432752.
        . IEEE Trans. Ind. Appl. , 4 , 2743 - 2752
    4. 4)
      • A. Madariaga , J.L. Martin , I. Zamora .
        4. Madariaga, A., Martin, J.L., Zamora, I., et al: ‘Technological trends in electric topologies for offshore wind power plants’, Renew. Sustain. Energy Rev., 2013, 24, pp. 3244.
        . Renew. Sustain. Energy Rev. , 32 - 44
    5. 5)
      • J. Lin .
        5. Lin, J.: ‘Integrating the first HVDC-based offshore wind power into PJM system- A real project case study’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 19701978.
        . IEEE Trans. Ind. Appl. , 3 , 1970 - 1978
    6. 6)
      • S. Debnath , J. Qin , B. Bahrani .
        6. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
        . IEEE Trans. Power Electron. , 1 , 37 - 53
    7. 7)
      • F. Xu , Z. Xu , H. Zheng .
        7. Xu, F., Xu, Z., Zheng, H., et al: ‘A tripole HVDC system based on modular multilevel converters’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 16831691.
        . IEEE Trans. Power Deliv. , 4 , 1683 - 1691
    8. 8)
      • E. Kontos , R.T. Pinto , S. Rodrigues .
        8. Kontos, E., Pinto, R.T., Rodrigues, S., et al: ‘Impact of HVDC transmission system topology on multiterminal DC network faults’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 844852.
        . IEEE Trans. Power Deliv. , 2 , 844 - 852
    9. 9)
      • R. Li , L. Xu , D. Holliday .
        9. Li, R., Xu, L., Holliday, D., et al: ‘Continuous operation of radial multiterminal HVDC systems under DC fault’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 351361.
        . IEEE Trans. Power Deliv. , 1 , 351 - 361
    10. 10)
      • D. Jovcic , M. Taherbaneh , J.P. Taisne .
        10. Jovcic, D., Taherbaneh, M., Taisne, J.P., et al: ‘Offshore DC grids as an interconnection of radial systems: Protection and control aspects’, IEEE Trans. Smart Grid., 2015, 6, (2), pp. 903910.
        . IEEE Trans. Smart Grid. , 2 , 903 - 910
    11. 11)
      • M.K. Bucher , C.M. Franck .
        11. Bucher, M.K., Franck, C.M.: ‘Analytic approximation of fault current contribution from AC networks to MTDC networks during pole-to-ground faults’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 2027.
        . IEEE Trans. Power Deliv. , 1 , 20 - 27
    12. 12)
      • H. Rao .
        12. Rao, H.: ‘Architecture of Nan'ao multi-terminal VSC-HVDC systems and its multi-functional control’, CSEE J. Power Energy Syst., 2015, 1, (1), pp. 918.
        . CSEE J. Power Energy Syst. , 1 , 9 - 18
    13. 13)
      • D. Doring , D. Ergin , K. Wurflinger .
        13. Doring, D., Ergin, D., Wurflinger, K., et al: ‘System integration aspects of DC circuit breakers’, IET Power Electron., 2016, 9, (2), pp. 219227.
        . IET Power Electron. , 2 , 219 - 227
    14. 14)
      • P. Mitra , C. Wikstrom , N. Johannesson .
        14. Mitra, P., Wikstrom, C., Johannesson, N., et al: ‘First real-time implementation of DC grid protection strategy’. IET Int. Conf. on AC and DC Power Transmission, Birmingham, United Kingdom, February 2015, pp. 18.
        . IET Int. Conf. on AC and DC Power Transmission , 1 - 8
    15. 15)
      • C. Petino , M. Heidemann , D. Eichoff .
        15. Petino, C., Heidemann, M., Eichoff, D., et al: ‘Application of multilevel full bridge converters in HVDC multiterminal systems’, IET Power Electron., 2016, 9, (2), pp. 297304.
        . IET Power Electron. , 2 , 297 - 304
    16. 16)
      • Y. Xue , Z. Xu , G. Tang .
        16. Xue, Y., Xu, Z., Tang, G.: ‘Self-start control with grouping sequentially precharge for the C-MMC-based HVDC system’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 187198.
        . IEEE Trans. Power Deliv. , 1 , 187 - 198
    17. 17)
      • E. Kontos , R.T. Pinto , P. Bauer .
        17. Kontos, E., Pinto, R.T., Bauer, P.: ‘Providing dc fault ride-through capability to H-Bridge MMC based HVDC Networks’. 2015 9th Int. Conf. on Power Electronics and ECCE Asia, Seoul, South Korea, June 2015, pp. 15421551.
        . 2015 9th Int. Conf. on Power Electronics and ECCE Asia , 1542 - 1551
    18. 18)
      • M.H. Rahman , L. Xu , L. Yao .
        18. Rahman, M.H., Xu, L., Yao, L.: ‘DC fault protection strategy considering DC network partition’. IEEE Power and Energy Society General Meeting, Boston, MA, USA, July 2016, pp. 15.
        . IEEE Power and Energy Society General Meeting , 1 - 5
    19. 19)
      • R. Li , L. Xu , L. Yao .
        19. Li, R., Xu, L., Yao, L., et al: ‘Active control of DC fault currents in DC solid-state transformers during ride-through operation of multi-terminal HVDC systems’, IEEE Trans. Energy Convers., 2016, 31, (4), pp. 13361346.
        . IEEE Trans. Energy Convers. , 4 , 1336 - 1346
    20. 20)
      • W. Lin , D. Jovcic .
        20. Lin, W., Jovcic, D.: ‘Power balancing and dc fault ride through in DC grids with DC hubs and wind farms’, IET Renew. Power Gener., 2015, 9, (7), pp. 847856.
        . IET Renew. Power Gener. , 7 , 847 - 856
    21. 21)
      • M. Corti , E. Tironi , G. Ubezio .
        21. Corti, M., Tironi, E., Ubezio, G.: ‘DC networks including multi-port DC/DC converters: fault analysis’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 36553662.
        . IEEE Trans. Ind. Appl. , 5 , 3655 - 3662
    22. 22)
      • G. Liu , F. Xu , Z. Xu .
        22. Liu, G., Xu, F., Xu, Z., et al: ‘Assembly HVDC breaker for HVDC grids with modular multilevel converters’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 931941.
        . IEEE Trans. Power Electron. , 2 , 931 - 941
    23. 23)
      • W. Lin , D. Jovcic , S. Nguefeu .
        23. Lin, W., Jovcic, D., Nguefeu, S., et al: ‘Modeling of high-power hybrid DC circuit breaker for grid-level studies’, IET Power Electron., 2016, 9, (2), pp. 237246.
        . IET Power Electron. , 2 , 237 - 246
    24. 24)
      • A.A. Aboushady , K.H. Ahmed , D. Jovcic .
        24. Aboushady, A.A., Ahmed, K.H., Jovcic, D.: ‘Analysis and hardware testing of cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, United Kingdom, February 2015, pp. 17.
        . 11th IET Int. Conf. on AC and DC Power Transmission , 1 - 7
    25. 25)
      • P. Wang , Z. Li , X. Zhang .
        25. Wang, P., Li, Z., Zhang, X., et al: ‘DC fault management for VSC MTDC system using delayed-auto-re-configuration scheme’. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, February 2015, pp. 17.
        . 11th IET Int. Conf. on AC and DC Power Transmission , 1 - 7
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0060
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address