http://iet.metastore.ingenta.com
1887

Review and comparative analysis of vortex generation systems for sustainable electric power production

Review and comparative analysis of vortex generation systems for sustainable electric power production

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a review and comparison on the power generation by artificial vortex approach. The basic principles of the artificial vortex theory are presented to comprehend the topic. The main characteristics of the components, working principles and features of the existing Vortex Generator Systems for the production of electricity have been discussed and compared. The literature demonstrates that there are two ways to establish the vortex updraft flow: (i) by constructing a special design of the updraft tower to yield a vertical pressure gradient along the axis of a vortex. These types of system have a high investment cost due to the tall tower, or (ii) by using an external heat source to create large temperature rise in ambient air and enhance the buoyancy forces. This integration between the vortex generation system and the wasted heat source is restricted operation in the industrial areas. Therefore, enhancement and development of the way to use a simple construction design based on the solar energy as a heat source support the technology of electricity production by artificial vortex generation. A solar based vortex power generator could be a potential technology for electric power generation, especially in the desert and rural areas.

References

    1. 1)
      • (2016)
        1. IEA: ‘Executive summary – world energy outlook’ (International Energy Agency, 2016), pp. 18.
        .
    2. 2)
      • K. Solangi , M. Islam , R. Saidur .
        2. Solangi, K., Islam, M., Saidur, R., et al: ‘A review on global solar energy policy’, Renew. Sustain. Energy Rev.’, 2011, 15, pp. 21492163.
        . Renew. Sustain. Energy Rev.’ , 2149 - 2163
    3. 3)
      • (2014)
        3. REN21: ‘Global status report’ (United Nations Environment Programme, UNEP, 2014), pp. 1214.
        .
    4. 4)
      • L.M. Michaud .
        4. Michaud, L.M.: ‘Proposal for the use of a controlled tornado-like vortex to capture the mechanical energy produced in the atmosphere from solar energy’, Bull. Am. Meteorol. Soc., 1975, 56, (5), pp. 530534.
        . Bull. Am. Meteorol. Soc. , 5 , 530 - 534
    5. 5)
      • L.M. Michaud .
        5. Michaud, L.M.: ‘Heat to work conversion during upward heat convection, part I: Carnot engine method’, Atmos. Res., 1995, 39, pp. 157178.
        . Atmos. Res. , 157 - 178
    6. 6)
      • Q. Chen , M. Wang , N. Pan .
        6. Chen, Q., Wang, M., Pan, N., et al: ‘Optimization principles for convective heat transfer’, Energy, 2009, 34, (9), pp. 11991206.
        . Energy , 9 , 1199 - 1206
    7. 7)
      • S. Nizetic .
        7. Nizetic, S.: ‘Technical utilization of convective vortices of carbon-free electricity production: a review’, Energy, 2011, 36, (2), pp. 12361242.
        . Energy , 2 , 1236 - 1242
    8. 8)
      • N.O. Renno , A.P. Ingersoll .
        8. Renno, N.O., Ingersoll, A.P.: ‘Natural convection as a heat engine: a theory for CAPE’, J. Atmos. Sci., 1996, 53, (4), pp. 572585.
        . J. Atmos. Sci. , 4 , 572 - 585
    9. 9)
      • N. Ninic , S. Nizetic .
        9. Ninic, N., Nizetic, S.: ‘Elementary theory of stationary vortex columns for solar chimney power plants’, Sol. Energy, 2009, 83, (4), pp. 462476.
        . Sol. Energy , 4 , 462 - 476
    10. 10)
      • T. Ishiara , S. Oh , Y. Tokuyama .
        10. Ishiara, T., Oh, S., Tokuyama, Y.: ‘Numerical study on flow fields of tornado-like vortices using the LES turbulence model’, J. Wind Eng. Ind. Aerodyn., 2011, 99, (9), pp. 239248.
        . J. Wind Eng. Ind. Aerodyn. , 9 , 239 - 248
    11. 11)
      • R.P. Davies-Jones , V.T. Wood .
        11. Davies-Jones, R.P., Wood, V.T.: ‘Simulation Doppler velocity signatures of evolving tornado-like vortex’, J. Atmos. Ocean. Technol., 2006, 23, (8), pp. 10291048.
        . J. Atmos. Ocean. Technol. , 8 , 1029 - 1048
    12. 12)
      • D. Natarajan .
        12. Natarajan, D.: ‘Numerical simulation of tornado-like vortices’. PhD thesis, University of Western Ontario, 2011.
        .
    13. 13)
      • A.T. Mustafa , H.H. Al-Kayiem , S.I. Gilani .
        13. Mustafa, A.T., Al-Kayiem, H.H., Gilani, S.I.: ‘A review of convective and artificial vortices for power generation’, Int. J. Sustain. Dev. Plan., 2015, 10, (5), pp. 650665.
        . Int. J. Sustain. Dev. Plan. , 5 , 650 - 665
    14. 14)
      • W.A. Lyons . (1997)
        14. Lyons, W.A.: ‘The handy weather answer Book’ (Visible Ink Press, 1997, 2nd edn.), pp. 175200.
        .
    15. 15)
      • S.J. Ying , C.C. Chang .
        15. Ying, S.J., Chang, C.C.: ‘Exploratory model study of tornado-Like vortex dynamics’, J. Atmos. Sci., 1970, 27, (1), pp. 314.
        . J. Atmos. Sci. , 1 , 3 - 14
    16. 16)
      • C.B. Leovy .
        16. Leovy, C.B.: ‘Mars: the devil is in the dust’, Nature, 2013, 424, pp. 10081009.
        . Nature , 1008 - 1009
    17. 17)
      • N.O. Renno , M.L. Burkett , M.P. Larkin .
        17. Renno, N.O., Burkett, M.L., Larkin, M.P.: ‘A simple thermodynamical theory for dust devils’, J. Atmos. Sci., 1998, 55, pp. 32443252.
        . J. Atmos. Sci. , 3244 - 3252
    18. 18)
      • N.O. Renno , H.B. Bluestein .
        18. Renno, N.O., Bluestein, H.B.: ‘A simple theory for waterspouts’, J. Atmos. Sci., 2001, 58, pp. 927932.
        . J. Atmos. Sci. , 927 - 932
    19. 19)
      • S. Nizetic .
        19. Nizetic, S.: ‘Analytical approach for estimating the pressure drop potential in convective vortex heat engines’, Trans. Can. Soc. Mech. Eng., 2014, 38, (1), pp. 8191.
        . Trans. Can. Soc. Mech. Eng. , 1 , 81 - 91
    20. 20)
      • N.O. Renno .
        20. Renno, N.O.: ‘A thermodynamical general theory for convective vortices’, Tellus, 2008, 60A, pp. 688699.
        . Tellus , 688 - 699
    21. 21)
      • L.M. Michaud .
        21. Michaud, L.M.: ‘Heat to work conversion during upward heat convection part II: internally generated entropy method’, Atmos. Res., 1996, 41, pp. 93108.
        . Atmos. Res. , 93 - 108
    22. 22)
      • L.M. Michaud .
        22. Michaud, L.M.: ‘Thermodynamic cycle of the atmospheric upward heat convection process’, Meteorol. Atmos. Phys., 2000, 72, pp. 2946.
        . Meteorol. Atmos. Phys. , 29 - 46
    23. 23)
      • L.M. Michaud .
        23. Michaud, L.M.: ‘Entrainment and detrainment required to explain updraft properties and work dissipation’, Tellus, 1998, 50A, pp. 02830301.
        . Tellus , 0283 - 0301
    24. 24)
      • L.M. Michaud .
        24. Michaud, L.M.: ‘On the energy and control of atmospheric vortices’, J. Rech. Atmos., 1977, 11, pp. 99120.
        . J. Rech. Atmos. , 99 - 120
    25. 25)
      • A.Y. Varaksin , M.E. Romash , V.N. Kopeitsev .
        25. Varaksin, A.Y., Romash, M.E., Kopeitsev, V.N., et al: ‘Experimental study of wall-free non –stationary vortices generation due to air unstable stratification’, Int. J. Heat Transfer, 2012, 55, (23-24), pp. 656766572.
        . Int. J. Heat Transfer , 6567 - 66572
    26. 26)
      • A.Y. Varaksin , M.E. Romash , V.N. Kopeitsev .
        26. Varaksin, A.Y., Romash, M.E., Kopeitsev, V.N.: ‘Tornado-like vortices generation due to air turbulent convection’. 14th European Turbulence Conf., France, 1–4 September 2013.
        . 14th European Turbulence Conf.
    27. 27)
      • H.S. Takhar , O.A. Beg .
        27. Takhar, H.S., Beg, O.A.: ‘Mathematical modeling of geophysical vortex flow’, Int. J. Fluid Mech. Res., 2005, 32, (4), pp. 439453.
        . Int. J. Fluid Mech. Res. , 4 , 439 - 453
    28. 28)
      • T. Fletcher .
        28. Fletcher, T., ‘Atmospheric vortex tower built in the summer of 2005: report on experiments and future plans’, www.authorstream.com, accessed 25 January 2008.
        .
    29. 29)
      • E. Stiig , M.R. Golriz .
        29. Stiig, E., Golriz, M.R.: ‘Wind power plant of cyclone type and method of obtaining energy from such’, US patent, US7364399 B2, April 2008.
        .
    30. 30)
      • E. Stiig .
        30. Stiig, E.: ‘Energy tower AB wind turbine’, http://peswiki.com / directory: energy tower-ab-wind-turbine, retrieved on January 2017.
        .
    31. 31)
      • A. Coustou .
        31. Coustou, A.: ‘A major innovation: the vortex tower power stations (self-secure vortex tower)’, Int. Sci. J. Altern. Energy and Ecol., 2008. http://www.hydrogen.ru/ISJAEE_05_2008/page_62.htm, accessed 1st April 2016.
        . Int. Sci. J. Altern. Energy and Ecol.
    32. 32)
      • A. Coustou , P. Alary .
        32. Coustou, A., Alary, P.: ‘Air power generator tower’, US patent, US20100199668 A1, August 2010.
        .
    33. 33)
      • G. Mamulashvili .
        33. Mamulashvili, G.: ‘Trailing solar chimney’, SU patent, SU1319654 A1, 1987.
        .
    34. 34)
      • 34. Eng. Mamulashvili, G.-Smart Hydro vortex Ltd, www.slideshare.net/ Dr Eng George Mamulashvili/solar-energy-47422845, accessed 26 April 2015.
        .
    35. 35)
      • G. Mamulashvili .
        35. Mamulashvili, G.Air thermal power efficiency rises trough rotational air flowhttps://www.startbase.ru/knowledge/articles/318/, accessed 2017.
        .
    36. 36)
      • N. Ninic , S. Nizetic .
        36. Ninic, N., Nizetic, S.: ‘Solar power plant with short diffuser’, patent WO2009/060245 A1, May 2009.
        .
    37. 37)
      • I. Dincer , A. Midilli , H. Kucuk . (2014)
        37. Dincer, I., Midilli, A., Kucuk, H.: ‘An alternative energy concept: a solar power plant with a short diffuser’, chapter 23, in Dincer, I., Midilli, A., Kucuk, H. (Eds.): ‘Progress in sustainable energy technologies: generating renewable energy’ (Springer, 2014), pp. 407412.
        .
    38. 38)
      • R.C. Mital .
        38. Mital, R.C.: ‘Harnessing Electricity from a Controlled Tornado’, US patent, US20140284928 A1, September 2014.
        .
    39. 39)
      • S. Tepic .
        39. Tepic, S.: ‘Generating electrical power utilizing surface-level hot air as the heat source, high atmosphere as the heat sink and a microwave beam to initiate and control air updraft’, US Patents, US9049752 B2, June 2015.
        .
    40. 40)
      • M.A. Dunn .
        40. Dunn, M.A.: ‘Solar Vortex Electric Power Generator’, US patent, US6772593 B2, August 2004.
        .
    41. 41)
      • M.S. Simpson , A.J. Pearlstein , A. Glezer .
        41. Simpson, M.S., Pearlstein, A.J., Glezer, A.: ‘Power generation from concentrated solar-heated air using buoyancy-induced vortices’. Proc. Int. Conf. Renewable energies and power quality (ICREPQ, 13), Bilbao, Spain, 20–22 March 2013.
        . Proc. Int. Conf. Renewable energies and power quality (ICREPQ, 13)
    42. 42)
      • 42. ‘Georgia Institute of Technology Fluid Mechanics Research Lab, projects: solar Vortex’, http://www.fmrl.gatech.edu/drupal/projects/solarvortex, accessed on June 2017.
        .
    43. 43)
      • L.M. Michaud .
        43. Michaud, L.M.: ‘The atmospheric vortex engine’. IEEE Toronto Int. Conf. Science and Technology for Humanity (TIC-STH), Toronto, Canada, 2009, pp. 971975.
        . IEEE Toronto Int. Conf. Science and Technology for Humanity (TIC-STH) , 971 - 975
    44. 44)
      • L.M. Michaud .
        44. Michaud, L.M.: ‘The Atmospheric Vortex Engine’, US patent, US7086823 B2, August 2006.
        .
    45. 45)
      • L.M. Michaud .
        45. Michaud, L.M.: ‘Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere’, Appl. Energy, 1999, 62, pp. 241251.
        . Appl. Energy , 241 - 251
    46. 46)
      • L.M. Michaud .
        46. Michaud, L.M.: ‘The atmospheric vortex engine’, Available online at http://vortexengine.ca/index.shtml, 2010.
        .
    47. 47)
      • 47. ‘Solar Aero-vortex power station’, available online at http://viesh.ru/pre/vortex/v14, accessed on January 2017.
        .
    48. 48)
      • 48. ‘Solar Aero-vertical power station – Vortex Oscillation Ltd’, http://www.vortexosc.com, accessed on January 2017.
        .
    49. 49)
      • H.H. Al-Kayiem , A.T. Mustafa , S.I.U. Gilani .
        49. Al-Kayiem, H.H., Mustafa, A.T., Gilani, S.I.U.: ‘Vortex field simulation and analysis of a solar updraft power engine’, WIT Trans. Ecol. Environ., 2016, 205, pp. 193202. doi: 10.2495/EQ160181.
        . WIT Trans. Ecol. Environ. , 193 - 202
    50. 50)
      • H.H. AI-Kayiem , A.T. Mustafa .
        50. AI-Kayiem, H.H., Mustafa, A.T.: ‘Solar Vortex Engine’, Malaysia Patent, PI2015702890, August 2015.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0058
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address