http://iet.metastore.ingenta.com
1887

Virtual storage capacity using demand response management to overcome intermittency of solar PV generation

Virtual storage capacity using demand response management to overcome intermittency of solar PV generation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The integration of solar photovoltaic (PV) systems into the distribution network creates various stability and reliability issues associated with the intermittency of solar PV power generation. Energy storage is a vital component required for overcoming the intermittency of solar PV. This study presents a priority-based demand response management (DRM) for loads with large time constants to create virtual energy storage. The virtual energy storage thus created can be used for partial levelling of intermittent output from solar PVs. The proposed DRM algorithm involves controlling loads with large time constants such as air conditioning systems and refrigerators based on the forecasted solar PV generation. The proposed method is evaluated using data-driven simulations, weather data and mathematical models. The proposed algorithm is highly suitable for megacities that have high number of multi-storey residential buildings. Utilising the virtual storage capacity available from the appliances will reduce the investment as well as the operation cost of renewable energy such as solar PV. Analyses on impact on temperature, percentage of interruptions, cost savings and impact on energy storage sizing are also presented for evaluating the performance of the proposed algorithm.

References

    1. 1)
      • A.H. Lim .
        1. Lim, A.H.: ‘HDB's experience in solar PV system’. Available at http://www.spring.gov.sg/NewsEvents/Events/Documents/SS601/7-HDBExperienceinSolarPVSystem-AhHee.pdf, accessed December 2016.
        .
    2. 2)
      • R. Wong .
        2. Wong, R.: ‘Solar potential of HDB blocks in Singapore’, Energy Stud. Inst. Bull., 2011, 4, (3), pp. 67.
        . Energy Stud. Inst. Bull. , 3 , 6 - 7
    3. 3)
      • S.-M. En .
        3. En, S.-M.: ‘900 HDB blocks, eight govt sites to be equipped with solar panels’. Available at https://www.edb.gov.sg/content/edb/en/news-and-events/news/2015-news/hdb-launches-first-tender-under-edb-led-programme-solarnova.html, accessed December 2016.
        .
    4. 4)
      • 4. Installed capacity of grid-connected solar photovoltaic (PV) systems, 2008–2017’. Available at https://www.ema.gov.sg/cmsmedia/Publications_and_Statistics/Statistics/31RSU.pdf, accessed June 2017.
        .
    5. 5)
      • J. Wu , A. Botterud , A. Mills .
        5. Wu, J., Botterud, A., Mills, A., et al: ‘Integrating solar PV (photovoltaics) in utility system operations: analytical framework and Arizona case study’, Energy, 2015, 85, pp. 19.
        . Energy , 1 - 9
    6. 6)
      • N. Jenkins , J. Ekanayake , G. Strbac . (2009)
        6. Jenkins, N., Ekanayake, J., Strbac, G.: ‘Distributed generation’ (The Institution of Engineering and Technology, UK, 2009).
        .
    7. 7)
      • S.C. Vegunta , P. Twomey , D. Randles .
        7. Vegunta, S.C., Twomey, P., Randles, D.: ‘Impact of PV and load penetration on LV network voltages and unbalance and potential solutions’. IET Conf. Proc., June 2013, p. 1481.
        . IET Conf. Proc. , 1481
    8. 8)
      • T. Adefarati , R.C. Bansal .
        8. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
        . IET Renew. Power Gener. , 7 , 873 - 884
    9. 9)
      • P. Ithayasrichareon , I.F. MacGill .
        9. Ithayasrichareon, P., MacGill, I.F.: ‘Valuing large-scale solar photovoltaics in future electricity generation portfolios and its implications for energy and climate policies’, IET Renew. Power Gener., 2016, 10, (1), pp. 7987.
        . IET Renew. Power Gener. , 1 , 79 - 87
    10. 10)
      • L. Barelli , U. Desideri , A. Ottaviano .
        10. Barelli, L., Desideri, U., Ottaviano, A.: ‘Challenges in load balance due to renewable energy sources penetration: the possible role of energy storage technologies relative to the Italian case’, Energy, 2015, 93, (1), pp. 393405.
        . Energy , 1 , 393 - 405
    11. 11)
      • P. Yi , X. Dong , A. Iwayemi .
        11. Yi, P., Dong, X., Iwayemi, A., et al: ‘Real-time opportunistic scheduling for residential demand response’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 227234.
        . IEEE Trans. Smart Grid , 1 , 227 - 234
    12. 12)
      • S.A. Husen , A. Pandharipande , L. Tolhuizen .
        12. Husen, S.A., Pandharipande, A., Tolhuizen, L., et al: ‘Lighting systems control for demand response’. Proc. IEEE PES Innovative Smart Grid Technologies, October 2012, pp. 16.
        . Proc. IEEE PES Innovative Smart Grid Technologies , 1 - 6
    13. 13)
      • M. Pipattanasomporn , M. Kuzlu , S. Rahman .
        13. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: ‘An algorithm for intelligent home energy management and demand response analysis’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21662173.
        . IEEE Trans. Smart Grid , 4 , 2166 - 2173
    14. 14)
      • G. Hug-Glanzmann .
        14. Hug-Glanzmann, G.: ‘A hybrid approach to balance the variability and intermittency of renewable generation’, Proc. IEEE Trondheim Powertech, June 2011, pp. 18.
        . Proc. IEEE Trondheim Powertech , 1 - 8
    15. 15)
      • R. Wang , P. Wang , G. Xiao .
        15. Wang, R., Wang, P., Xiao, G., et al: ‘Power demand and supply management in microgrids with uncertainties of renewable energies’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 260269.
        . Int. J. Electr. Power Energy Syst. , 260 - 269
    16. 16)
      • M. Pipattanasomporn , M. Kuzlu , S. Rahman .
        16. Pipattanasomporn, M., Kuzlu, M., Rahman, S., et al: ‘Load profiles of selected major household appliances and their demand response opportunities’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 742750.
        . IEEE Trans. Smart Grid , 2 , 742 - 750
    17. 17)
      • N. Lu .
        17. Lu, N.: ‘An evaluation of the HVAC load potential for providing load balancing service’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12631270.
        . IEEE Trans. Smart Grid , 3 , 1263 - 1270
    18. 18)
      • G. Goddard , J. Klose , S. Backhaus .
        18. Goddard, G., Klose, J., Backhaus, S.: ‘Model development and identification for fast demand response in commercial HVAC systems’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20842092.
        . IEEE Trans. Smart Grid , 4 , 2084 - 2092
    19. 19)
      • H. Hao , B.M. Sanandaji , K. Poolla .
        19. Hao, H., Sanandaji, B.M., Poolla, K., et al: ‘Aggregate flexibility of thermostatically controlled loads’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 189198.
        . IEEE Trans. Power Syst. , 1 , 189 - 198
    20. 20)
      • S.H. Tindemans , V. Trovato , G. Strbac .
        20. Tindemans, S.H., Trovato, V., Strbac, G.: ‘Decentralized control of thermostatic loads for flexible demand response’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 16851700.
        . IEEE Trans. Control Syst. Technol. , 5 , 1685 - 1700
    21. 21)
      • J.T. Huges , A.D. Dominguez-Garcia , K. Poolla .
        21. Huges, J.T., Dominguez-Garcia, A.D., Poolla, K.: ‘Virtual battery models for load flexibility from commercial buildings’. Proc. 48th Hawaii Int. Conf. System Sciences, January 2015, pp. 26272635.
        . Proc. 48th Hawaii Int. Conf. System Sciences , 2627 - 2635
    22. 22)
      • A. Nayyar , M. Negrete-Pincetic , K. Poolla .
        22. Nayyar, A., Negrete-Pincetic, M., Poolla, K., et al: ‘Duration-differentiated energy services with a continuum of loads’, IEEE Trans. Control Netw. Syst., 2016, 3, (2), pp. 182191.
        . IEEE Trans. Control Netw. Syst. , 2 , 182 - 191
    23. 23)
      • J.L. Mathieu , T. Haring , J.O. Ledyard .
        23. Mathieu, J.L., Haring, T., Ledyard, J.O., et al: ‘Residential demand response program design: engineering and economic perspectives’. IEEE EEM Conf. Proc., May 2013, pp. 18.
        . IEEE EEM Conf. Proc. , 1 - 8
    24. 24)
      • J.L. Mathieu , D.S. Callaway .
        24. Mathieu, J.L., Callaway, D.S.: ‘The value of real-time data in controlling electric loads for demand response’. Carnegie Mellon Conf. the Electricity Industry: Data Driven Sustainable Energy Systems Proc., March 2012, pp. 1214.
        . Carnegie Mellon Conf. the Electricity Industry: Data Driven Sustainable Energy Systems Proc. , 12 - 14
    25. 25)
      • P.H. Cheah , R. Zhang , H.B. Gooi .
        25. Cheah, P.H., Zhang, R., Gooi, H.B., et al: ‘Consumer energy portal and home energy management system for smart grid applications’. IEEE IPEC Conf. Proc., December 2012, pp. 407411.
        . IEEE IPEC Conf. Proc. , 407 - 411
    26. 26)
      • C. Poolla , A. Ishihara , S. Rosenberg .
        26. Poolla, C., Ishihara, A., Rosenberg, S., et al: ‘Neural network forecasting of solar power for NASA Ames sustainability base’. Proc. IEEE Computational Intelligence Applications in Smart Grid, December 2014, pp. 18.
        . Proc. IEEE Computational Intelligence Applications in Smart Grid , 1 - 8
    27. 27)
      • H. Beltran , E. Perez , N. Aparicio .
        27. Beltran, H., Perez, E., Aparicio, N., et al: ‘Daily solar energy estimation for minimizing energy storage requirements in PV power plants’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 474481.
        . IEEE Trans. Sustain. Energy , 2 , 474 - 481
    28. 28)
      • 28. Database of HDB blocks, studied by Teoalida’. Available at http://www.teoalida.com/singapore/hdbdatabase/, accessed December 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0036
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address