access icon free Virtual storage capacity using demand response management to overcome intermittency of solar PV generation

The integration of solar photovoltaic (PV) systems into the distribution network creates various stability and reliability issues associated with the intermittency of solar PV power generation. Energy storage is a vital component required for overcoming the intermittency of solar PV. This study presents a priority-based demand response management (DRM) for loads with large time constants to create virtual energy storage. The virtual energy storage thus created can be used for partial levelling of intermittent output from solar PVs. The proposed DRM algorithm involves controlling loads with large time constants such as air conditioning systems and refrigerators based on the forecasted solar PV generation. The proposed method is evaluated using data-driven simulations, weather data and mathematical models. The proposed algorithm is highly suitable for megacities that have high number of multi-storey residential buildings. Utilising the virtual storage capacity available from the appliances will reduce the investment as well as the operation cost of renewable energy such as solar PV. Analyses on impact on temperature, percentage of interruptions, cost savings and impact on energy storage sizing are also presented for evaluating the performance of the proposed algorithm.

Inspec keywords: buildings (structures); demand side management; photovoltaic power systems; solar power; power generation control; load regulation

Other keywords: multistorey residential buildings; air conditioning systems; forecasted solar PV generation; priority-based demand response management; solar PV generation intermittency; data-driven simulations; mathematical models; renewable energy; load control; DRM; refrigerators; distribution network; virtual energy storage; weather data; virtual storage capacity; solar photovoltaic systems

Subjects: Solar power stations and photovoltaic power systems; Power system management, operation and economics; Power system control; Control of electric power systems; Solar energy

References

    1. 1)
      • 7. Vegunta, S.C., Twomey, P., Randles, D.: ‘Impact of PV and load penetration on LV network voltages and unbalance and potential solutions’. IET Conf. Proc., June 2013, p. 1481.
    2. 2)
      • 4. Installed capacity of grid-connected solar photovoltaic (PV) systems, 2008–2017’. Available at https://www.ema.gov.sg/cmsmedia/Publications_and_Statistics/Statistics/31RSU.pdf, accessed June 2017.
    3. 3)
      • 6. Jenkins, N., Ekanayake, J., Strbac, G.: ‘Distributed generation’ (The Institution of Engineering and Technology, UK, 2009).
    4. 4)
      • 8. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    5. 5)
      • 3. En, S.-M.: ‘900 HDB blocks, eight govt sites to be equipped with solar panels’. Available at https://www.edb.gov.sg/content/edb/en/news-and-events/news/2015-news/hdb-launches-first-tender-under-edb-led-programme-solarnova.html, accessed December 2016.
    6. 6)
      • 27. Beltran, H., Perez, E., Aparicio, N., et al: ‘Daily solar energy estimation for minimizing energy storage requirements in PV power plants’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 474481.
    7. 7)
      • 17. Lu, N.: ‘An evaluation of the HVAC load potential for providing load balancing service’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12631270.
    8. 8)
      • 14. Hug-Glanzmann, G.: ‘A hybrid approach to balance the variability and intermittency of renewable generation’, Proc. IEEE Trondheim Powertech, June 2011, pp. 18.
    9. 9)
      • 9. Ithayasrichareon, P., MacGill, I.F.: ‘Valuing large-scale solar photovoltaics in future electricity generation portfolios and its implications for energy and climate policies’, IET Renew. Power Gener., 2016, 10, (1), pp. 7987.
    10. 10)
      • 19. Hao, H., Sanandaji, B.M., Poolla, K., et al: ‘Aggregate flexibility of thermostatically controlled loads’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 189198.
    11. 11)
      • 12. Husen, S.A., Pandharipande, A., Tolhuizen, L., et al: ‘Lighting systems control for demand response’. Proc. IEEE PES Innovative Smart Grid Technologies, October 2012, pp. 16.
    12. 12)
      • 1. Lim, A.H.: ‘HDB's experience in solar PV system’. Available at http://www.spring.gov.sg/NewsEvents/Events/Documents/SS601/7-HDBExperienceinSolarPVSystem-AhHee.pdf, accessed December 2016.
    13. 13)
      • 13. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: ‘An algorithm for intelligent home energy management and demand response analysis’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21662173.
    14. 14)
      • 20. Tindemans, S.H., Trovato, V., Strbac, G.: ‘Decentralized control of thermostatic loads for flexible demand response’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 16851700.
    15. 15)
      • 26. Poolla, C., Ishihara, A., Rosenberg, S., et al: ‘Neural network forecasting of solar power for NASA Ames sustainability base’. Proc. IEEE Computational Intelligence Applications in Smart Grid, December 2014, pp. 18.
    16. 16)
      • 10. Barelli, L., Desideri, U., Ottaviano, A.: ‘Challenges in load balance due to renewable energy sources penetration: the possible role of energy storage technologies relative to the Italian case’, Energy, 2015, 93, (1), pp. 393405.
    17. 17)
      • 28. Database of HDB blocks, studied by Teoalida’. Available at http://www.teoalida.com/singapore/hdbdatabase/, accessed December 2016.
    18. 18)
      • 25. Cheah, P.H., Zhang, R., Gooi, H.B., et al: ‘Consumer energy portal and home energy management system for smart grid applications’. IEEE IPEC Conf. Proc., December 2012, pp. 407411.
    19. 19)
      • 11. Yi, P., Dong, X., Iwayemi, A., et al: ‘Real-time opportunistic scheduling for residential demand response’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 227234.
    20. 20)
      • 24. Mathieu, J.L., Callaway, D.S.: ‘The value of real-time data in controlling electric loads for demand response’. Carnegie Mellon Conf. the Electricity Industry: Data Driven Sustainable Energy Systems Proc., March 2012, pp. 1214.
    21. 21)
      • 16. Pipattanasomporn, M., Kuzlu, M., Rahman, S., et al: ‘Load profiles of selected major household appliances and their demand response opportunities’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 742750.
    22. 22)
      • 2. Wong, R.: ‘Solar potential of HDB blocks in Singapore’, Energy Stud. Inst. Bull., 2011, 4, (3), pp. 67.
    23. 23)
      • 5. Wu, J., Botterud, A., Mills, A., et al: ‘Integrating solar PV (photovoltaics) in utility system operations: analytical framework and Arizona case study’, Energy, 2015, 85, pp. 19.
    24. 24)
      • 22. Nayyar, A., Negrete-Pincetic, M., Poolla, K., et al: ‘Duration-differentiated energy services with a continuum of loads’, IEEE Trans. Control Netw. Syst., 2016, 3, (2), pp. 182191.
    25. 25)
      • 18. Goddard, G., Klose, J., Backhaus, S.: ‘Model development and identification for fast demand response in commercial HVAC systems’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20842092.
    26. 26)
      • 21. Huges, J.T., Dominguez-Garcia, A.D., Poolla, K.: ‘Virtual battery models for load flexibility from commercial buildings’. Proc. 48th Hawaii Int. Conf. System Sciences, January 2015, pp. 26272635.
    27. 27)
      • 23. Mathieu, J.L., Haring, T., Ledyard, J.O., et al: ‘Residential demand response program design: engineering and economic perspectives’. IEEE EEM Conf. Proc., May 2013, pp. 18.
    28. 28)
      • 15. Wang, R., Wang, P., Xiao, G., et al: ‘Power demand and supply management in microgrids with uncertainties of renewable energies’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 260269.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0036
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading