Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free L 1 adaptive fuzzy control of wind energy conversion systems via variable structure adaptation for all wind speed regions

A decentralised control scheme is proposed to manipulate the speed and the pitch angle of a 1.5 MW wind turbine. In region 2, the goal is to capture maximum power by tracking a reference turbine's speed. For region 3, the goal is to regulate the turbine's speed at its rated value and harvest the rated power. L 1 adaptive controllers are proposed to achieve the previous goals. A new L 1 adaptive algorithm, based on fuzzy modelling and variable structure adaptation, is introduced. Performance bounds on the proposed controllers are derived. Simulation results illustrate the superiority of the proposed algorithm compared with both proportional–integral and basic L 1 adaptive controllers.

References

    1. 1)
      • 11. Geng, H., Yang, G.: ‘Output power control for variable-speed variable-pitch wind generation systems’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 494503.
    2. 2)
      • 1. Bianchi, F.D., De Battista, H., Mantz, R.J.: ‘Wind turbine control systems: principles, modelling and gain scheduling design’ (Springer-Verlag, London, 2007).
    3. 3)
      • 7. Boukhezzar, B., Siguerdidjane, H.: ‘Nonlinear control of variable speed wind turbines for power regulation’. IEEE Conf. Control Appl., 28–31 August 2005, pp. 114119.
    4. 4)
      • 18. Hsu, L., Araujo, A.D., Costa, R.: ‘Analysis and design of I/O based variable structure adaptive control’, IEEE Trans. Autom. Control, 1994, 39, (1), pp. 421.
    5. 5)
      • 27. Chengyu, C., Hovakimyan, N.: ‘Design and analysis of a novel L1 adaptive control architecture with guaranteed transient performance’, IEEE Trans. Autom. Control, 2008, 53, (2), pp. 586591.
    6. 6)
      • 29. Jonkman, B.: ‘Turbsim user's guide: version 1.50’. Technical Report NREL/TP-500-46198, September 2009.
    7. 7)
      • 28. Chengyu, C., Hovakimyan, N.: ‘Novel L1 neural network adaptive control architecture with guaranteed transient performance’, IEEE Trans. Neural Netw., 2007, 18, (4), pp. 11601171.
    8. 8)
      • 14. Kharisov, E., Hovakimyan, N., Astrom, K.J.: ‘Comparison of architectures and robustness of model reference adaptive controllers and L1 adaptive controllers’, Int. J. Adapt. Control Signal Process., 2014, 28, (7–8), pp. 633663.
    9. 9)
      • 26. Elshafei, A.: ‘Adaptive fuzzy control of nonlinear systems via a variable-structure algorithm’. Int. Symp. on Intelligent Control, Vancouver, Canada, 2002.
    10. 10)
      • 25. Ioannou, P.A., Kokotovic, P.V.: ‘Robust redesign of adaptive control’, IEEE Trans. Autom. Control, 1984, 29, (3), pp. 202211.
    11. 11)
      • 6. Miller, A., Muljadi, E., Zinger, D.: ‘A variable speed wind turbine power control’, IEEE Trans. Energy Convers., 1997, 12, (2), pp. 181186.
    12. 12)
      • 16. Boskovic, J., Mehra, R.: ‘Performance analysis of a simple L1-adaptive controller’. American Control Conf., Washington, DC, 2013.
    13. 13)
      • 2. Chen, Z., Guerrero, J., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    14. 14)
      • 30. Nam, Y.: ‘Control system design, wind turbines’, in Dr. Al-Bahadly I. (Ed.). ISBN: 978-953307-221-0, 07-221-0, InTech. Available at http://www.intechopen.com/books/wind-turbines/control-system-design, 2011.
    15. 15)
      • 23. Kosko, B.: ‘Fuzzy engineering’ (Prentice Hall International, New Jersey, 1997).
    16. 16)
      • 20. Beltran, B., Benbouzid, M.E.H., Ahmed-Ali, T.: ‘Second-order sliding mode control of a doubly fed induction generator driven wind turbine’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 261269.
    17. 17)
      • 13. Chengyu, C., Hovakimyan, N.: ‘L1 adaptive control theory, guaranteed robbusness with fast adaptation’ (SIAM, Philadelphia, PA, 2010).
    18. 18)
      • 31. Diaz-Gonzalez, F., Bianchi, F.D., Sumper, A., et al: ‘Control of a flywheel energy storage system for power smoothing in wind power plants’, IEEE Trans. Energy Convers., March 2014, 29, (1), pp. 204214.
    19. 19)
      • 22. Elnaggar, M., Abdel-Fattah, H., Elshafei, A.: ‘Maximum power tracking in WECS (wind energy conversion systems) via numerical and stochastic approaches’, Energy, 2014, 74, pp. 651661.
    20. 20)
      • 8. Meng, W., Yang, Q., You Ying, Y.S.Z.Y., et al: ‘Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 716825.
    21. 21)
      • 19. Jonkman, J., Buhl, M.: ‘FAST user's guide’. Technical Report NREL/EL-500-38230, August 2005.
    22. 22)
      • 15. Chengyu, C., Hovakimyan, N.: ‘Stability margins of L1 adaptive control architecture’, IEEE Trans. Autom. Control, 2010, 55, (2), pp. 480487.
    23. 23)
      • 10. Xiao, S., Geng, H., Yang, G.: ‘Non-linear pitch control of wind turbines for tower load reduction’, IET Renew. Power Gener., 2014, 8, (7), pp. 786794.
    24. 24)
      • 24. Pomet, J.B., Praly, L.: ‘Adaptive nonlinear regulation: estimation from the Lyapunov equation’, IEEE Trans. Autom. Control, 1992, 37, (6), pp. 729740.
    25. 25)
      • 5. Ostergaard, K.Z., Stoustrup, J., Brath, P.: ‘Linear parameter varying control of wind turbines covering both partial load and full load conditions’, Int. J. Robust Nonlinear Control, 2009, 19, pp. 92116.
    26. 26)
      • 32. Uehara, A., Pratap, A., Goya, T., et al: ‘A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 550558.
    27. 27)
      • 9. Yilmaz, A., Özer, Z.: ‘Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks’, Expert Syst. Appl., 2009, 36, pp. 97679775.
    28. 28)
      • 4. Bossanyi, E.A.: ‘The design of closed loop controllers for wind turbines’, Wind Energy, 2000, 3, pp. 149163.
    29. 29)
      • 21. She, Y., She, X., Baran, M.E.: ‘Universal tracking control of wind conversion system for purpose of maximum power acquisition under hierarchical control structure’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 766775.
    30. 30)
      • 3. Wang, Q., Chang, L.: ‘An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 1241249.
    31. 31)
      • 17. Ioannou, P.A., Annaswamy, A.M., Narendra, K.S., et al: ‘L1-adaptive control: stability, robustness, and interpretations’, IEEE Trans. Autom. Control, 2014, 59, (11), pp. 30753080.
    32. 32)
      • 12. Dalala, Z.M., Zahid, Z.U., Lai, J.-S.: ‘New overall control strategy for small-scale WECS in MPPT and stall regions with mode transfer control’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 10821092.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0028
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address