Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient maximum power point tracking using model predictive control for photovoltaic systems under dynamic weather condition

This study presents a high-efficient maximum power point tracking (MPPT) of photovoltaic (PV) systems by means of model-predictive control (MPC) techniques that is applied to a high-gain DC–DC converter. The high variability and stochastic nature of solar energy requires that the MPPT control continuously adjust the power converter operating point in order to track the changing maximum power point; a concept well known in the literature. The main contribution of this study is a model-predictive-based controller with a fixed step that is combined with the traditional incremental conductance (INC) method. This technique improves the speed at which the controller can track rapid changes in solar insolation and results in an increase in the overall efficiency of the PV system. The controller speeds up convergence since MPC predicts error before the switching signal is applied to the high-gain multilevel DC–DC converter and thus is able to choose the next switch event to minimise error between the commanded and actual converter operation. Comparing the proposed technique to the conventional INC method shows substantial improvement in MPPT effectiveness and PV system performance. The performance of the proposed MPC-MPPT is analysed and validated experimentally.

References

    1. 1)
      • 12. Urayai, C., Amaratunga, G.A.J.: ‘Single-sensor maximum power point tracking algorithms’, IET Renew. Power Gener., 2013, 7, pp. 8288.
    2. 2)
      • 20. Abushaiba, A.A., Eshtaiwi, S.M.M., Ahmadi, R.: ‘A new model predictive based maximum power point tracking method for photovoltaic applications’. IEEE Int. Conf. Electro Information Technology (EIT), 2016, pp. 05710575.
    3. 3)
      • 10. Sajadian, S., Ahmadi, R.: ‘Model predictive based maximum power point tracking for grid-tied photovoltaic applications using a Z-source inverter’, IEEE Trans. Power Electron., 2016, 31, pp. 76117620.
    4. 4)
      • 31. Haroun, R., El Aroudi, A., Cid-Pastor, A., et al: ‘Impedance matching in photovoltaic systems using cascaded boost converters and sliding-mode control’, IEEE Trans. Power Electron., 2015, 30, pp. 31853199.
    5. 5)
      • 16. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gener., 2010, 4, pp. 317328.
    6. 6)
      • 15. Elgendy, M.A., Atkinson, D.J., Zahawi, B.: ‘Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates’, IET Renew. Power Gener., 2016, 10, pp. 133139.
    7. 7)
      • 2. Abbes, D., Martinez, A., Champenois, G.: ‘Eco-design optimisation of an autonomous hybrid wind-photovoltaic system with battery storage’, IET Renew. Power Gener., 2012, 6, pp. 358371.
    8. 8)
      • 8. Qin, L., Xie, S., Hu, M., et al: ‘Stable operating area of photovoltaic cells feeding DC-DC converter in output voltage regulation mode’, IET Renew. Power Gener., 2015, 9, pp. 970981.
    9. 9)
      • 30. Wuhua, L., Xiangning, H.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, pp. 12391250.
    10. 10)
      • 22. Shadmand, M.B., Mosa, M., Balog, R.S., et al: ‘An improved MPPT technique of high gain DC-DC converter by model predictive control for photovoltaic applications’. IEEE Applied Power Electronics Conf. & Exposition (APEC), 2014, pp. 29932999.
    11. 11)
      • 28. Soliman, M., Malik, O.P., Westwick, D.T.: ‘Multiple model multiple-input multiple-output predictive control for variable speed variable pitch wind energy conversion systems’, IET Renew. Power Gener., 2011, 5, pp. 124136.
    12. 12)
      • 3. Dagdougui, H., Ouammi, A., Dessaint, L., et al: ‘Global energy management system for cooperative networked residential green buildings’, IET Renew. Power Gener., 2016, 10, pp. 12371244.
    13. 13)
      • 35. Maksimovic, D., Cuk, S.: ‘Switching converters with wide DC conversion range’, IEEE Trans. Power Electron., 1991, 6, pp. 151157.
    14. 14)
      • 7. Esram, T., Chapman, P.L.: ‘Comparison of photovoltaic array maximum power point tracking techniques’, IEEE Trans. Energy Convers., 2007, 22, pp. 439449.
    15. 15)
      • 18. Kim, K.A., Li, R.M., Krein, P.T.: ‘Voltage-offset resistive control for DC-DC converters in photovoltaic applications’. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2012, pp. 20452052.
    16. 16)
      • 34. Rosas-Caro, J.C., Ramirez, J.M., Peng, F.Z., et al: ‘A DC-DC multilevel boost converter’, IET Power Electron., 2010, 3, pp. 129137.
    17. 17)
      • 5. Ransome, S.: ‘Worldwide photovoltaic energy yield sensitivity from a variety of input losses’, IET Renew. Power Gener., 2015, 9, pp. 398404.
    18. 18)
      • 25. Rodriguez, J., Cortes, P.: ‘Predictive control of power converters and electrical drives’ (John Wiley & Sons, 2012), vol. 37.
    19. 19)
      • 24. Holtz, J., Stadtfeld, S.: ‘A predictive controller for the stator current vector of AC machines fed from a switched voltage source’. Int. Power Electronics Conf. (IPEC), 1983, pp. 16651675.
    20. 20)
      • 23. Shadmand, M.B., Mosa, M., Balog, R.S., et al: ‘Maximum power point tracking of grid connected photovoltaic system employing model predictive control’. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2015, pp. 30673074.
    21. 21)
      • 6. Bidram, A., Davoudi, A., Balog, R.S.: ‘Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays’, IEEE J. Photovolt., 2012, 2, pp. 532546.
    22. 22)
      • 37. Mayo-Maldonado, J.C., Rosas-Caro, J.C., Rapisarda, P.: ‘Modeling approaches for DC-DC converters with switched capacitors’, IEEE Trans. Ind. Electron., 2015, 62, pp. 953959.
    23. 23)
      • 4. Esterly, S., Gelman, R.: ‘Renewable Energy Data Book’. National Renewable Energy Laboratory (NREL), Washington, DC, 2013.
    24. 24)
      • 11. Elobaid, L.M., Abdelsalam, A.K., Zakzouk, E.E.: ‘Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey’, IET Renew. Power Gener., 2015, 9, pp. 10431063.
    25. 25)
      • 26. Abu-Rub, H., Guzinski, J., Krzeminski, Z., et al: ‘Predictive current control of voltage-source inverters’, IEEE Trans. Ind. Electron., 2004, 51, pp. 585593.
    26. 26)
      • 29. Bordons, C., Montero, C.: ‘Basic principles of MPC for power converters: bridging the gap between theory and practice’, IEEE Ind. Electron. Mag., 2015, 9, pp. 3143.
    27. 27)
      • 1. Lazzard: ‘Lazard's levelized cost of energy analysis-version 8.0’, September 2014.
    28. 28)
      • 32. Walker, G.R., Sernia, P.C.: ‘Cascaded DC-DC converter connection of photovoltaic modules’, IEEE Trans. Power Electron., 2004, 19, pp. 11301139.
    29. 29)
      • 33. Mousa, M., Ahmed, M.E., Orabi, M.: ‘New converter circuitry for high v applications using switched inductor multilevel converter’. IEEE Int. Telecommunications Energy Conf. (INTELEC), 2011, pp. 18.
    30. 30)
      • 17. Syafaruddin, E.K., Hiyama, T.: ‘Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions’, IET Renew. Power Gener., 2009, 3, pp. 239253.
    31. 31)
      • 9. Zainuri, M.A.A.M., Radzi, M.A.M., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter’, IET Renew. Power Gener., 2014, 8, pp. 183194.
    32. 32)
      • 21. Abdel-Rahim, O., Furiato, H., Haruna, J.: ‘Modified maximum power point tracking technique based on fixed frequency model predictive control for PV applications’. 40th Annual Conf. IEEE Industrial Electronics Society (IECON), 2014, pp. 51205124.
    33. 33)
      • 27. Bayhan, S., Abu-Rub, H., Ellabban, O.: ‘Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid’, IET Renew. Power Gener., 2016, 10, pp. 514521.
    34. 34)
      • 13. Sundareswaran, K., Peddapati, S., Palani, S.: ‘Application of random search method for maximum power point tracking in partially shaded photovoltaic systems’, IET Renew. Power Gener., 2014, 8, pp. 670678.
    35. 35)
      • 14. Hua, C.C., Fang, Y.H., Chen, W.T.: ‘Hybrid maximum power point tracking method with variable step size for photovoltaic systems’, IET Renew. Power Gener., 2016, 10, pp. 127132.
    36. 36)
      • 36. Araujo, S.V., Torrico-Bascope, R.P., Torrico-Bascope, G.V.: ‘Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell’, IEEE Trans. Ind. Electron., 2010, 57, pp. 19871997.
    37. 37)
      • 38. Mohan, N., Robbins, W.P., Undeland, T.M., et al: ‘Simulation of power electronic and motion control systems-an overview’, Proc. IEEE, 1994, 82, pp. 12871302.
    38. 38)
      • 19. Elgendy, M.A., Zahawi, B., Atkinson, D.J.: ‘Comparison of directly connected and constant voltage controlled photovoltaic pumping systems’, IEEE Trans. Sustain. Energy, 2010, 1, pp. 184192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0018
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address