Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system

Higher cost and stochastic nature of intermittent renewable energy (RE) resources complicate their planning, integration and operation of electric power system. Therefore, it is critical to determine the appropriate sizes of RE sources and associated energy storage for efficient, economic and reliable operation of electric power system. In this study, two constraint-based iterative search algorithms are proposed for optimal sizing of the wind turbine (WT), solar photovoltaic (PV) and the battery energy storage system (BESS) in the grid-connected configuration of a microgrid. The first algorithm, named as sources sizing algorithm, determines the optimal sizes of RE sources while the second algorithm, called as battery sizing algorithm, determines the optimal capacity of BESS. These algorithms are mainly based upon two key essentials, i.e. maximum reliability and minimum cost. The proposed methodology aims to avoid over- and under-sizing by searching every possible solution in the given search space. Moreover, it considers the forced outage rates of PV, WT and utilisation factor of BESS which makes it more realistic. Simulation results depict the effectiveness of the proposed approach.

References

    1. 1)
      • 21. Yang, H., Lu, L., Zhou, W.: ‘A novel optimization sizing model for hybrid solar-wind power generation system’, Sol. Energy, 2007, 81, (1), pp. 7684.
    2. 2)
      • 30. Lai, C.S., McCulloch, M.D.: ‘Sizing of stand-alone solar PV and storage system with anaerobic digestion biogas power plants’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 21122121.
    3. 3)
      • 32. Boyle, G.: ‘Renewable energy’ (Oxford University Press, UK, 2004).
    4. 4)
      • 34. Chen, S.X., Gooi, H.B., Wang, M.Q.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    5. 5)
      • 29. Atia, R., Yamada, N.: ‘Sizing and analysis of renewable energy and battery system in residential microgrids’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 12041213.
    6. 6)
      • 4. Ram, J.P., Babu, T.S., Rajasekar, N.: ‘A comprehensive review on solar PV maximum power point tracking techniques’, Renew. Sustain. Energy Rev., 2017, 67, pp. 826847.
    7. 7)
      • 1. http://unfccc.int/paris_agreement/items/ 9485.php, accessed August 2017.
    8. 8)
      • 19. Kellogg, W., Nehrir, M., Venkataramanan, G., et al: ‘Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems’, IEEE Trans. Energy Convers., 1998, 13, (1), pp. 7075.
    9. 9)
      • 6. Blaabjerg, F., Teodorescu, R., Chen, Z., et al: ‘Power converters and control of renewable energy systems’. Proc. 6th Int. Conf. Power Electron, 2004, pp. 120.
    10. 10)
      • 24. Moradi, M.H., Eskandari, M.H., Mahdi, S.: ‘Operational strategy optimization in an optimal sized smart microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 10871095.
    11. 11)
      • 5. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875.
    12. 12)
      • 31. Abeywardana, D.B.W., Hredzak, B., Agelidis, V., et al: ‘Supercapacitor sizing method for energy controlled filter based hybrid energy storage systems’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 16261637.
    13. 13)
      • 22. Wang, L., Singh, C.: ‘PSO-based multi-criteria optimum design of a grid-connected hybrid power system with multiple renewable sources of energy’. IEEE Swarm Intelligence Symp., 2007, pp. 250257.
    14. 14)
      • 16. He, G., Chen, Q., Kang, C., et al: ‘Cooperation of wind power and battery storage to provide frequency regulation in power markets’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 35593568.
    15. 15)
      • 25. Kellogg, W., Nehrir, M., Venkataramanan, G., et al: ‘Optimal unit sizing for a hybrid wind/photovoltaic generating system’, Electr. Power Syst. Res., 1996, 39, (1), pp. 3538.
    16. 16)
      • 33. Roy, S.: ‘Market constrained optimal planning for wind energy conversion systems over multiple installation site’, IEEE Trans. Energy Convers., 2002, 17, (1), pp. 124129.
    17. 17)
      • 14. Khalid, M., Ahmadi, A., Savkin, A.V., et al: ‘Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage’, Renew. Energy, 2016, 97, pp. 646655.
    18. 18)
      • 23. Clerc, M.: ‘Particle swarm optimization’, vol. 93 (John Wiley & Sons, 2010).
    19. 19)
      • 15. Xiaokang, X., Bishop, M., Oikarinen, D.G., et al: ‘Application and modeling of battery energy storage in power systems’, CSEE J. Power Energy Syst., 2016, 2, (3), pp. 8290.
    20. 20)
      • 10. Denholm, P., Margolis, R.M.: ‘Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies’, Energy Policy, 2007, 35, (9), pp. 44244433.
    21. 21)
      • 3. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    22. 22)
      • 12. O'Dwyer, C., Ryan, L., Flynn, D.: ‘Efficient large-scale energy storage dispatch: challenges in future high renewable systems’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 34393450.
    23. 23)
      • 17. Deeba, S.R., Sharma, R., Saha, T.K., et al: ‘Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks’, IET Renew. Power Gener., 2016, 10, (8), pp. 11491160.
    24. 24)
      • 13. Poonpun, P., Jewell, W.T.: ‘Analysis of the cost per kilowatt hour to store electricity’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 529534.
    25. 25)
      • 28. Yang, P., Nehorai, A.: ‘Joint optimization of hybrid energy storage and generation capacity with renewable energy’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 15661574.
    26. 26)
      • 2. Kuznetsova, E., Ruiz, C., Li, Y.F., et al: ‘Analysis of robust optimization for decentralized microgrid energy management under uncertainty’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 815832.
    27. 27)
      • 8. Khalid, M., Savkin, A.V.: ‘A model predictive control approach to the problem of wind power smoothing with controlled battery storage’, Renew. Energy, 2010, 35, (7), pp. 15201526.
    28. 28)
      • 9. Thapa, S., Karki, R.: ‘Reliability benefit of energy storage in wind integrated power system operation’, IET. Gener. Transm. Distrib., 2016, 10, (3), pp. 807814.
    29. 29)
      • 26. Ahmadi, S., Abdi, S.: ‘Application of hybrid big bang-big crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system’, Sol. Energy, 2016, 134, pp. 366374.
    30. 30)
      • 27. Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.A.: ‘Optimal allocation and sizing of PV/wind/split-diesel/battery hybrid energy system for minimizing life cycle cost, emission and dump energy of remote residential building’, Appl. Energy, 2016, 171, pp. 153171.
    31. 31)
      • 11. Khatamianfar, A., Khalid, M., Savkin, A.V., et al: ‘Improving wind farm dispatch in the Australian electricity market with battery energy storage using model predictive control’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 745755.
    32. 32)
      • 7. Kyritsis, A., Voglitsis, D., Papanikolaou, N., et al: ‘Evolution of PV systems in Greece and review of applicable solutions for higher penetration levels’, Renew. Energy, 2017, 109, pp. 487499.
    33. 33)
      • 20. Xu, L., Ruan, X., Mao, C., et al: ‘An improved optimal sizing method for wind-solar battery hybrid power system’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 774785.
    34. 34)
      • 18. Savkin, A.V., Khalid, M., Agelidis, V.G.: ‘A constrained monotonic charging/discharging strategy for optimal capacity of battery energy storage supporting wind farms’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 12241231.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2017.0010
Loading

Related content

content/journals/10.1049/iet-rpg.2017.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address