http://iet.metastore.ingenta.com
1887

Weather forecasting error in solar energy forecasting

Weather forecasting error in solar energy forecasting

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As renewable distributed energy resources (DERs) penetrate the power grid at an accelerating speed, it is essential for operators to have accurate solar photovoltaic (PV) energy forecasting for efficient operations and planning. Generally, observed weather data are applied in the solar PV generation forecasting model while in practice the energy forecasting is based on forecasted weather data. A study on the uncertainty in weather forecasting for the most commonly used weather variables is presented. The forecasted weather data for 6 days ahead is compared with the observed data and the results of analysis are quantified by statistical metrics. In addition, the most influential weather predictors in energy forecasting model are selected. The performance of historical and observed weather data errors is assessed using a solar PV generation forecasting model. Finally, a sensitivity test is performed to identify the influential weather variables whose accurate values can significantly improve the results of energy forecasting.

References

    1. 1)
      • M. Ghorbaniparvar , X. Li , N. Zhou .
        1. Ghorbaniparvar, M., Li, X., Zhou, N.: ‘Demand side management with a human behavior model for energy cost optimization in smart grids’. 2015 IEEE Global Conf. on Signal and Information Processing (GlobalSIP), 2015, pp. 503507.
        . 2015 IEEE Global Conf. on Signal and Information Processing (GlobalSIP) , 503 - 507
    2. 2)
      • H.H. Yengejeh , F. Shahnia , S.M. Islam .
        2. Yengejeh, H.H., Shahnia, F., Islam, S.M.: ‘Contributions of single-phase rooftop PVs on short circuits faults in residential feeders’. 2014 Australasian Universities Power Engineering Conf. (AUPEC), 2014, pp. 16.
        . 2014 Australasian Universities Power Engineering Conf. (AUPEC) , 1 - 6
    3. 3)
      • M. Sarailoo , S. Akhlaghi , M. Rezaeiahari .
        3. Sarailoo, M., Akhlaghi, S., Rezaeiahari, M., et al: ‘Residential solar panel performance improvement based on optimal intervals and optimal tilt angle’. 2017 IEEE Power and Energy Society General Meeting (PESGM), Chicago, IL, 2017.
        . 2017 IEEE Power and Energy Society General Meeting (PESGM)
    4. 4)
      • H. Sangrody , M. Sarailoo , A. Shokrollahi .
        4. Sangrody, H., Sarailoo, M., Shokrollahi, A., et al: ‘On the performance of forecasting models in the presence of input uncertainty’. 49th North American Power Symposium (NAPS), West Virginia, 2017.
        . 49th North American Power Symposium (NAPS)
    5. 5)
      • S. Akhlaghi , H. Sangrody , M. Sarailoo .
        5. Akhlaghi, S., Sangrody, H., Sarailoo, M., et al: ‘Efficient operation of residential solar panels with determination of the optimal tilt angle and optimal intervals based on forecasting model’, IET Renew. Power Gener., 2017, doi: 10.1049/iet-rpg.2016.1033.
        . IET Renew. Power Gener.
    6. 6)
      • N. Safari , C. Chung , G. Price .
        6. Safari, N., Chung, C., Price, G.: ‘A novel multi-step short-term wind power prediction framework based on chaotic time series analysis and singular spectrum analysis’, IEEE Trans. Power Syst., 2017, doi: 10.1109/TPWRS.2017.2694705.
        . IEEE Trans. Power Syst.
    7. 7)
      • H. Nazaripouya , B. Wang , Y. Wang .
        7. Nazaripouya, H., Wang, B., Wang, Y., et al: ‘Univariate time series prediction of solar power using a hybrid wavelet-ARMA-NARX prediction method’. 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D), 2016, pp. 15.
        . 2016 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D) , 1 - 5
    8. 8)
      • A.A. Moghaddam , A. Seifi .
        8. Moghaddam, A.A., Seifi, A.: ‘Study of forecasting renewable energies in smart grids using linear predictive filters and neural networks’, IET Renew. Power Gener., 2011, 5, (6), pp. 470480.
        . IET Renew. Power Gener. , 6 , 470 - 480
    9. 9)
      • Y. Ren , P. Suganthan , N. Srikanth .
        9. Ren, Y., Suganthan, P., Srikanth, N.: ‘Ensemble methods for wind and solar power forecasting—A state-of-the-art review’, Renew. Sustain. Energy Rev., 2015, 50, pp. 8291.
        . Renew. Sustain. Energy Rev. , 82 - 91
    10. 10)
      • R. Banos , F. Manzano-Agugliaro , F. Montoya .
        10. Banos, R., Manzano-Agugliaro, F., Montoya, F., et al: ‘Optimization methods applied to renewable and sustainable energy: a review’, Renew. Sustain. Energy Rev., 2011, 15, (4), pp. 17531766.
        . Renew. Sustain. Energy Rev. , 4 , 1753 - 1766
    11. 11)
      • M.G. De Giorgi , P.M. Congedo , M. Malvoni .
        11. De Giorgi, M.G., Congedo, P.M., Malvoni, M., et al: ‘Error analysis of hybrid photovoltaic power forecasting models: a case study of Mediterranean climate’, Energy Convers. Manage., 2015, 100, pp. 117130.
        . Energy Convers. Manage. , 117 - 130
    12. 12)
      • P. Bacher , H. Madsen , H.A. Nielsen .
        12. Bacher, P., Madsen, H., Nielsen, H.A.: ‘Online short-term solar power forecasting’, Sol. Energy, 2009, 83, (10), pp. 17721783.
        . Sol. Energy , 10 , 1772 - 1783
    13. 13)
      • M. De Giorgi , M. Malvoni , P. Congedo .
        13. De Giorgi, M., Malvoni, M., Congedo, P.: ‘Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine’, Energy, 2016, 107, pp. 360373.
        . Energy , 360 - 373
    14. 14)
      • F. Antonanzas-Torres , J. Antonanzas , R. Urraca .
        14. Antonanzas-Torres, F., Antonanzas, J., Urraca, R., et al: ‘Impact of atmospheric components on solar clear-sky models at different elevation: case study Canary Islands’, Energy Convers. Manage., 2016, 109, pp. 122129.
        . Energy Convers. Manage. , 122 - 129
    15. 15)
      • T. Hong , P. Wang , A. Pahwa .
        15. Hong, T., Wang, P., Pahwa, A., et al: ‘Cost of temperature history data uncertainties in short term electric load forecasting’. 2010 IEEE 11th Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), 2010, pp. 212217.
        . 2010 IEEE 11th Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS) , 212 - 217
    16. 16)
      • C. Chen , S. Duan , T. Cai .
        16. Chen, C., Duan, S., Cai, T., et al: ‘Online 24-h solar power forecasting based on weather type classification using artificial neural network’, Sol. Energy, 2011, 85, (11), pp. 28562870.
        . Sol. Energy , 11 , 2856 - 2870
    17. 17)
      • M. Alanazi , M. Mahoor , A. Khodaei .
        17. Alanazi, M., Mahoor, M., Khodaei, A.: ‘Two-stage hybrid day-ahead solar forecasting’. North American Power Symp. (NAPS), Morgantown, WV, 2017.
        . North American Power Symp. (NAPS)
    18. 18)
      • H. Sangrody , N. Zhou .
        18. Sangrody, H., Zhou, N.: ‘An initial study on load forecasting considering economic factors’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 15.
        . 2016 IEEE Power and Energy Society General Meeting (PESGM) , 1 - 5
    19. 19)
      • M. Ghorbaniparvar , N. Zhou .
        19. Ghorbaniparvar, M., Zhou, N.: ‘Bootstrap-based hypothesis test for detecting sustained oscillations’. 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 15.
        . 2015 IEEE Power & Energy Society General Meeting , 1 - 5
    20. 20)
      • J. Carpenter , J. Bithell .
        20. Carpenter, J., Bithell, J.: ‘Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians’, Stat. Med., 2000, 19, (9), pp. 11411164.
        . Stat. Med. , 9 , 1141 - 1164
    21. 21)
      • H. Sangrody , N. Zhou , X. Qiao .
        21. Sangrody, H., Zhou, N., Qiao, X.: ‘Probabilistic models for daily peak loads at distribution feeders’. Presented at the 2017 IEEE Power and Energy Society General Meeting (PESGM), Chicago, IL, 2017.
        . Presented at the 2017 IEEE Power and Energy Society General Meeting (PESGM)
    22. 22)
      • R.J. Hyndman , G. Athanasopoulos .
        22. Hyndman, R.J., Athanasopoulos, G.: ‘Forecasting: principles and practice: OTexts2014.
        .
    23. 23)
      • E. Foruzan , S.D. Scott , J. Lin .
        23. Foruzan, E., Scott, S.D., Lin, J.: ‘A comparative study of different machine learning methods for electricity prices forecasting of an electricity market’. North American Power Symp. (NAPS), 2015, 2015, pp. 16.
        . North American Power Symp. (NAPS), 2015 , 1 - 6
    24. 24)
      • J. Heaton . (2008)
        24. Heaton, J.: ‘Introduction to neural networks with Java’ (Heaton Research, 2008).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.1043
Loading

Related content

content/journals/10.1049/iet-rpg.2016.1043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address