http://iet.metastore.ingenta.com
1887

Optimal fixed reconfiguration scheme for PV arrays power enhancement under mutual shading conditions

Optimal fixed reconfiguration scheme for PV arrays power enhancement under mutual shading conditions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Mutual shading (MS) in photovoltaic (PV) plants occurs when a collector is shadowed by the front row of collectors. The prevention of MS is considered in designing of the PV plants (PVPs). Perforce, this can be ignored in places with low maximum Sun elevation angle during some days and rows spacing limitations. In MS conditions, the reduction in energy and increase in the payback time of PV systems occur. In this study, a new optimal fixed reconfiguration scheme is presented for minimising of the MS effects. In this scheme, the physical locations of modules in a total cross-tied (TCT) PV array are rearranged without altering the electrical interconnections. The presented scheme is able to minimise the MS effects independently from all shading parameters such as Sun position in the sky, latitude of PVP, and PV installation features. For this purpose, the MS pattern is initially determined and its features are explained. Then, an optimal physical arrangement is determined based on the aforementioned pattern. Minimisation of the resistance losses is also considered in the presented reconfiguration. Finally, the comparison of the optimal arrangement with the simple TCT and Sudoku arrangements is given in different conditions.

References

    1. 1)
      • A. Tabanjat , M. Becherif , D. Hissel .
        1. Tabanjat, A., Becherif, M., Hissel, D.: ‘Reconfiguration solution for shaded PV panels using switching control’, Renew. Energy J., 2015, 82, pp. 413.
        . Renew. Energy J. , 4 - 13
    2. 2)
      • K. Gillingham , H. Deng , R. Wiser .
        2. Gillingham, K., Deng, H., Wiser, R., et al: ‘Deconstructing solar photovoltaic pricing: the role of market structure, technology, and policy’, Energy J., 2016, 37, (2), pp. 231250.
        . Energy J. , 2 , 231 - 250
    3. 3)
      • M. Drif , P.J. Perez , J. Aguilera .
        3. Drif, M., Perez, P.J., Aguilera, J., et al: ‘A new estimation method of irradiance on a partially shaded PV generator in grid connected photovoltaic system’, Renew. Energy J., 2008, 33, (9), pp. 20482056.
        . Renew. Energy J. , 9 , 2048 - 2056
    4. 4)
      • K. Saha .
        4. Saha, K.: ‘Planning and installing photovoltaic system: ‘a guide for installers, architects and engineers’, Int. J. Environ. Stud., 2014, 71, (6), pp. 887898.
        . Int. J. Environ. Stud. , 6 , 887 - 898
    5. 5)
      • M. Garcia , J.A. Vera , L. Marroyo .
        5. Garcia, M., Vera, J.A., Marroyo, L., et al: ‘Solar tracking PV plants in Navarra: a 10 MW assessment’, Prog. Photovolt. Res. Appl., 2009, 17, (5), pp. 337346.
        . Prog. Photovolt. Res. Appl. , 5 , 337 - 346
    6. 6)
      • M. Di Piazza , G. Vitale .
        6. Di Piazza, M., Vitale, G.: ‘Photovoltaic field emulation including dynamic and partial shadow conditions’, Appl. Energy J., 2010, 87, (3), pp. 814823.
        . Appl. Energy J. , 3 , 814 - 823
    7. 7)
      • J. Bany , J. Appelbaum .
        7. Bany, J., Appelbaum, J.: ‘The effect of shading on the design of a field of solar collectors’, Sol. Cells, 1987, 20, (3), pp. 201228.
        . Sol. Cells , 3 , 201 - 228
    8. 8)
      • T. Kerekes , E. Koutroulis , D. Séra .
        8. Kerekes, T., Koutroulis, E., Séra, D., et al: ‘An optimization method for designing large PV plants’, IEEE J. Photovolt., 2013, 3, (2), pp. 814822.
        . IEEE J. Photovolt. , 2 , 814 - 822
    9. 9)
      • C. Deline .
        9. Deline, C.: ‘Partially shaded operation of a grid-tied PV system’. Proc. Int. Conf. 34th IEEE Photovoltaic Specialists, Philadelphia, PA, USA, June 2009, pp. 12681273.
        . Proc. Int. Conf. 34th IEEE Photovoltaic Specialists , 1268 - 1273
    10. 10)
      • P.P. Groumpos , K. Khouzam .
        10. Groumpos, P.P., Khouzam, K.: ‘A generic approach to the shadow effect of large solar power systems’, Sol. Cells, 1987, 22, (1), pp. 2946.
        . Sol. Cells , 1 , 29 - 46
    11. 11)
      • D. Weinstock , J. Appelbaum .
        11. Weinstock, D., Appelbaum, J.: ‘Deployment of collector in an optimal design of solar fields’. Proc. Int. 28th ISES Solar World Congress, Gothenburg, Sweden, June 2003, pp. 1419.
        . Proc. Int. 28th ISES Solar World Congress , 14 - 19
    12. 12)
      • V. Quaschning , R. Hanitsch .
        12. Quaschning, V., Hanitsch, R.: ‘Increased energy yield of 50% at flat roof and field installations with optimized module structures’. Proc. Int. Conf. Photovoltaic Solar Energy Conversion, Vienna, Austria, July 1998, pp. 19931996.
        . Proc. Int. Conf. Photovoltaic Solar Energy Conversion , 1993 - 1996
    13. 13)
      • D. Nguyen , B. Lehman .
        13. Nguyen, D., Lehman, B.: ‘An adaptive solar photovoltaic array using model-based reconfiguration algorithm’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26442654.
        . IEEE Trans. Ind. Electron. , 7 , 2644 - 2654
    14. 14)
      • A. Bidram , A. Davoudi , R. Balog .
        14. Bidram, A., Davoudi, A., Balog, R.: ‘Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays’, IEEE J. Photovolt., 2012, 2, (4), pp. 532546.
        . IEEE J. Photovolt. , 4 , 532 - 546
    15. 15)
      • S. BusquetsMonge , J. Rocabert , P. Rodriguez .
        15. BusquetsMonge, S., Rocabert, J., Rodriguez, P., et al: ‘Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array’, IEEE Trans. Ind. Electron., 2012, 55, (7), pp. 27132723.
        . IEEE Trans. Ind. Electron. , 7 , 2713 - 2723
    16. 16)
      • F. Blaabjerg , C. Zhe , S.B. Kjaer .
        16. Blaabjerg, F., Zhe, C., Kjaer, S.B.: ‘Power electronics as efficient interface in dispersed power generation systems’, IEEE Trans. Ind. Electron., 2004, 19, (5), pp. 11841194.
        . IEEE Trans. Ind. Electron. , 5 , 1184 - 1194
    17. 17)
      • T. Mishima , T. Ohnishi .
        17. Mishima, T., Ohnishi, T.: ‘A power compensation and control system for a partially shaded PV array’, Electr. Eng. Jpn. J., 2004, 146, (3), pp. 7482.
        . Electr. Eng. Jpn. J. , 3 , 74 - 82
    18. 18)
      • B. Indu Rani , G. Saravana Ilango , Ch. Nagamani .
        18. Indu Rani, B., Saravana Ilango, G., Nagamani, Ch.: ‘Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 594601.
        . IEEE Trans. Sustain. Energy , 3 , 594 - 601
    19. 19)
      • M. Shams El-Dein , M. Kazerani , M. Salama .
        19. Shams El-Dein, M., Kazerani, M., Salama, M.: ‘An optimal total cross tied interconnection for reducing mismatch losses in photovoltaic arrays’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 99107.
        . IEEE Trans. Sustain. Energy , 1 , 99 - 107
    20. 20)
      • P. Srinivasa Rao , G. Saravana Ilango , C. Nagamani .
        20. Srinivasa Rao, P., Saravana Ilango, G., Nagamani, C.: ‘Maximum power from PV arrays using a fixed configuration under different shading conditions’, IEEE J. Photovolt., 2014, 4, (2), pp. 679686.
        . IEEE J. Photovolt. , 2 , 679 - 686
    21. 21)
      • G. Spagnuolo , G. Petrone , B. Lehman .
        21. Spagnuolo, G., Petrone, G., Lehman, B., et al: ‘Control of photovoltaic arrays: dynamical reconfiguration for fighting mismatched conditions and meeting load requests’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 6276.
        . IEEE Ind. Electron. Mag. , 1 , 62 - 76
    22. 22)
      • M. Swaleh , M. Green .
        22. Swaleh, M., Green, M.: ‘Effect of shunt resistance and bypass diodes on the shadow tolerance of solar cell modules’, Sol. Cells, 1982, 5, (2), pp. 183198.
        . Sol. Cells , 2 , 183 - 198
    23. 23)
      • J. Appelbaum , J. Bany .
        23. Appelbaum, J., Bany, J.: ‘Shadow effect of adjacent solar collectors in large scale systems’, Sol. Energy, 1979, 23, (6), pp. 497507.
        . Sol. Energy , 6 , 497 - 507
    24. 24)
      • A. Lazou , A. Papatsoris .
        24. Lazou, A., Papatsoris, A.: ‘The economics of photovoltaic stand-alone residential households: a case study for various European and Mediterranean locations’, Sol. Energy Mater. Sol. Cells, 2000, 62, (4), pp. 411427.
        . Sol. Energy Mater. Sol. Cells , 4 , 411 - 427
    25. 25)
      • M. Iqbal . (1983)
        25. Iqbal, M.: ‘An introduction to solar radiation’ (Academic Press, New York, 1983).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0995
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0995
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address