http://iet.metastore.ingenta.com
1887

Evaluating the effectiveness of a machine learning approach based on response time and reliability for islanding detection of distributed generation

Evaluating the effectiveness of a machine learning approach based on response time and reliability for islanding detection of distributed generation

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Conventional relays, such as vector surge relay, frequency relay and rate-of-change-of-frequency relay, are usually employed for islanding detection; however, these conventional relays fail to detect islanding incidents in the presence of small power imbalance inside the islanded system. This study presents an islanding detection approach for synchronous type distributed generation using multiple features extracted from network variables and a support vector machine (SVM) classifier. Features are extracted from a sliding temporal window, whose width is selected so as to achieve the highest detection rate at a fixed false alarm rate. The SVM classifier is trained with linear, polynomial and Gaussian radial basis function kernels, and the parameters of the kernels are tuned to improve the classification performance. The application of the proposed method is illustrated for islanding cases associated with different power imbalance conditions, including small power imbalance conditions associated with the non-detection zone of conventional relays. Furthermore, variation of detection time as a function of power imbalance scenarios, which involve all probable combinations of deficit of active/reactive and excess of active/reactive power imbalance, is assessed in the testing phase. The performance of the proposed approach is evaluated and compared with those of conventional relays in terms of reliability and response time of islanding detection.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0987
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0987
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address