http://iet.metastore.ingenta.com
1887

Evaluating the effectiveness of a machine learning approach based on response time and reliability for islanding detection of distributed generation

Evaluating the effectiveness of a machine learning approach based on response time and reliability for islanding detection of distributed generation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Conventional relays, such as vector surge relay, frequency relay and rate-of-change-of-frequency relay, are usually employed for islanding detection; however, these conventional relays fail to detect islanding incidents in the presence of small power imbalance inside the islanded system. This study presents an islanding detection approach for synchronous type distributed generation using multiple features extracted from network variables and a support vector machine (SVM) classifier. Features are extracted from a sliding temporal window, whose width is selected so as to achieve the highest detection rate at a fixed false alarm rate. The SVM classifier is trained with linear, polynomial and Gaussian radial basis function kernels, and the parameters of the kernels are tuned to improve the classification performance. The application of the proposed method is illustrated for islanding cases associated with different power imbalance conditions, including small power imbalance conditions associated with the non-detection zone of conventional relays. Furthermore, variation of detection time as a function of power imbalance scenarios, which involve all probable combinations of deficit of active/reactive and excess of active/reactive power imbalance, is assessed in the testing phase. The performance of the proposed approach is evaluated and compared with those of conventional relays in terms of reliability and response time of islanding detection.

References

    1. 1)
      • 1. IEEE Standards Coordinating Committee 21: ‘IEEE standard for interconnecting embedded resources with electric power systems’, IEEE Standard 1547, 2003.
        .
    2. 2)
      • 2. IEEE Application Guide for IEEE Std. 1547: ‘IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std. 1547.2–2008, 2009.
        .
    3. 3)
      • H.G. Lasseter Far , A.J. Rodolakis , G. Joos .
        3. Lasseter Far, H.G., Rodolakis, A.J., Joos, G.: ‘Synchronous distributed generation islanding protection using intelligent relays’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16951703.
        . IEEE Trans. Smart Grid , 4 , 1695 - 1703
    4. 4)
      • L.K. Kumpulainen , K.T. Kauhaniemi .
        4. Kumpulainen, L.K., Kauhaniemi, K.T.: ‘Analysis of the impact of distributed generation on automatic reclosing’. Proc. IEEE PES Power Systems Conf. Exposition, 2004, pp. 603608.
        . Proc. IEEE PES Power Systems Conf. Exposition , 603 - 608
    5. 5)
      • M.R. Alam , K. Muttaqi , A. Bouzerdoum .
        5. Alam, M.R., Muttaqi, K., Bouzerdoum, A.: ‘An Approach for assessing the effectiveness of multiple features based SVM method for islanding detection of distributed generation’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 28442852.
        . IEEE Trans. Ind. Appl. , 4 , 2844 - 2852
    6. 6)
      • E. Kamyab , J. Sadeh .
        6. Kamyab, E., Sadeh, J.: ‘Islanding detection method for photovoltaic distributed generation based on voltage drifting’, IET Gener. Transm. Distrib., 2013, 7, (6), pp. 584592.
        . IET Gener. Transm. Distrib. , 6 , 584 - 592
    7. 7)
      • H.H. Zeineldin , S. Conti .
        7. Zeineldin, H.H., Conti, S.: ‘Sandia frequency shift parameter selection for multi-inverter systems to eliminate non-detection zone’, IET Renew. Power Gener., 2011, 5, (2), pp. 175183.
        . IET Renew. Power Gener. , 2 , 175 - 183
    8. 8)
      • A. Khamis , H. Shareef , A. Mohamed .
        8. Khamis, A., Shareef, H., Mohamed, A.: ‘Islanding detection and load shedding scheme for radial distribution systems integrated with dispersed generations’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22612275.
        . IET Gener. Transm. Distrib. , 15 , 2261 - 2275
    9. 9)
      • W. Freitas , W. Xu , C.M. Affonso .
        9. Freitas, W., Xu, W., Affonso, C.M., et al: ‘Comparative analysis between ROCOF and vector surge relays for distributed generation applications’, IEEE Trans. Power Deliv., 2005, 20, (21), pp. 13151324.
        . IEEE Trans. Power Deliv. , 21 , 1315 - 1324
    10. 10)
      • N.W.A. Lidula , A.D. Rajapakse .
        10. Lidula, N.W.A., Rajapakse, A.D.: ‘A pattern recognition approach for detecting power islands using transient signals – part I: design and implementation’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 30703077.
        . IEEE Trans. Power Deliv. , 4 , 3070 - 3077
    11. 11)
      • H. Bitaraf , M. Sheikholeslamzadeh , A.M. Ranjbar .
        11. Bitaraf, H., Sheikholeslamzadeh, M., Ranjbar, A.M., et al: ‘Neuro-fuzzy islanding detection in distributed generation’. Proc. IEEE Conf. on Innovative Smart Grid Technologies – Asia (ISGT Asia), Tianjin, 21–24 May 2012, pp. 15.
        . Proc. IEEE Conf. on Innovative Smart Grid Technologies – Asia (ISGT Asia) , 1 - 5
    12. 12)
      • M.R. Alam , K.M. Muttaqi , A. Bouzerdoum .
        12. Alam, M.R., Muttaqi, K.M., Bouzerdoum, A.: ‘A multifeature-based approach for islanding detection of dg in the subcritical region of vector surge relays’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 23492358.
        . IEEE Trans. Power Deliv. , 5 , 2349 - 2358
    13. 13)
      • K. El-Arroudi , G. Joos , I. Kamwa .
        13. El-Arroudi, K., Joos, G., Kamwa, I., et al: ‘Intelligent-based approach to islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 828835.
        . IEEE Trans. Power Deliv. , 2 , 828 - 835
    14. 14)
      • V.N. Vapnik . (1998)
        14. Vapnik, V.N.: ‘Statistical learning theory’ (John Wiley, New York, 1998).
        .
    15. 15)
      • N. Cristianini , J. Shawe-Taylor . (2000)
        15. Cristianini, N., Shawe-Taylor, J.: ‘An introduction to support vector machines and other kernel-based learning methods’ (Cambridge University Press, Cambridge, MA, 2000).
        .
    16. 16)
      • P. Kundur . (1994)
        16. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
        .
    17. 17)
      • J.C.M. Vieira , W. Freitas , W. Xu .
        17. Vieira, J.C.M., Freitas, W., Xu, W., et al: ‘An investigation on the nondetection zones of synchronous distributed generation anti-islanding protection’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 593600.
        . IEEE Trans. Power Deliv. , 2 , 593 - 600
    18. 18)
      • T. Fawcett .
        18. Fawcett, T.: ‘An introduction to ROC analysis’, Pattern Recognit. Lett., 2006, 27, (8), pp. 861874.
        . Pattern Recognit. Lett. , 8 , 861 - 874
    19. 19)
      • J.C.M. Vieira , W. Freitas , W. Xu .
        19. Vieira, J.C.M., Freitas, W., Xu, W., et al: ‘performance of frequency relays for distributed generation protection’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 11201127.
        . IEEE Trans. Power Deliv. , 3 , 1120 - 1127
    20. 20)
      • 20. Technical Report of NECA for frequency operating standards determination, September 2001. Available at http://www.neca.com.au/Files/RP_Final_Determination_Sep_2001.pdf.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0987
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0987
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address