http://iet.metastore.ingenta.com
1887

Diagnosis of non-linear mixed multiple faults based on underdetermined blind source separation for wind turbine gearbox: simulation, testbed and realistic scenarios

Diagnosis of non-linear mixed multiple faults based on underdetermined blind source separation for wind turbine gearbox: simulation, testbed and realistic scenarios

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The diagnosis of multi-fault in wind turbine gearbox based on vibration signal processing is considered challenging as the collected measurements from acceleration transducers are often a non-linear mixture of signals induced from an unknown number of sources, i.e. an underdetermined blind source separation (UBSS) problem. In this study, a novel UBSS-based algorithmic solution is proposed to address this technical challenge from two aspects: source number estimation and source signal recovery. The former is realised based on the empirical mode decomposition and singular value decomposition (SVD) joint approach; and for the latter, the observed vibration signals are transformed to the time-frequency domain using short-time Fourier transform to obtain the sparse representation of the signals. The fuzzy C-means clustering and l 1 norm decomposition are carried out to estimate the mixing matrix and recover the source signals, respectively. The performance of proposed solution is extensively assessed through experiments based on simulation, testbed and realistic wind farm measurements for a range of fault scenarios for both linear and non-linear scenarios. The numerical result clearly confirms the effectiveness of the proposed algorithmic solution for non-linear multi-fault diagnosis of wind turbines.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0982
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0982
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address