http://iet.metastore.ingenta.com
1887

Diagnosis of non-linear mixed multiple faults based on underdetermined blind source separation for wind turbine gearbox: simulation, testbed and realistic scenarios

Diagnosis of non-linear mixed multiple faults based on underdetermined blind source separation for wind turbine gearbox: simulation, testbed and realistic scenarios

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The diagnosis of multi-fault in wind turbine gearbox based on vibration signal processing is considered challenging as the collected measurements from acceleration transducers are often a non-linear mixture of signals induced from an unknown number of sources, i.e. an underdetermined blind source separation (UBSS) problem. In this study, a novel UBSS-based algorithmic solution is proposed to address this technical challenge from two aspects: source number estimation and source signal recovery. The former is realised based on the empirical mode decomposition and singular value decomposition (SVD) joint approach; and for the latter, the observed vibration signals are transformed to the time-frequency domain using short-time Fourier transform to obtain the sparse representation of the signals. The fuzzy C-means clustering and l 1 norm decomposition are carried out to estimate the mixing matrix and recover the source signals, respectively. The performance of proposed solution is extensively assessed through experiments based on simulation, testbed and realistic wind farm measurements for a range of fault scenarios for both linear and non-linear scenarios. The numerical result clearly confirms the effectiveness of the proposed algorithmic solution for non-linear multi-fault diagnosis of wind turbines.

References

    1. 1)
      • 1. US Department of Energy. Available at http://energy.gov/eere/wind/articles/statistics-show-bearing-problems-cause-majority-wind-turbine-gearbox-failures, September 17, 2015.
        .
    2. 2)
      • V Purushotham , S Narayanan , S.A. Prasad .
        2. Purushotham, V, Narayanan, S, Prasad, S.A.: ‘Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition’, NDT E Int., 2005, 38, (8), pp. 654664.
        . NDT E Int. , 8 , 654 - 664
    3. 3)
      • Z.X. Li , X.P. Yan , C.Q. Yuan .
        3. Li, Z.X., Yan, X.P., Yuan, C.Q., et al: ‘Gear multi-faults diagnosis of a rotating machinery based on independent component analysis and fuzzy k-nearest neighbour’, Adv. Mater. Res., 2010, 108, pp. 10331038.
        . Adv. Mater. Res. , 1033 - 1038
    4. 4)
      • H. Jiang , C. Li , H. Li .
        4. Jiang, H., Li, C., Li, H.: ‘An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis’, Mech. Syst. Signal Process., 2013, 36, (2), pp. 225239.
        . Mech. Syst. Signal Process. , 2 , 225 - 239
    5. 5)
      • Y. Chen , J. Meng .
        5. Chen, Y., Meng, J.: ‘Study on BSS algorithm used on fault diagnosis of gearbox’, TELKOMNIKA Indonesian J. Electr. Eng., 2013, 11, pp. 29422947.
        . TELKOMNIKA Indonesian J. Electr. Eng. , 2942 - 2947
    6. 6)
      • G. Gelle , M. Colas , C. Serviere .
        6. Gelle, G., Colas, M., Serviere, C.: ‘Blind source separation: a tool for rotating machine monitoring by vibrations analysis’, J. Sound Vib., 2001, 248, pp. 865885.
        . J. Sound Vib. , 865 - 885
    7. 7)
      • N. Bouguerriou , M. Haritopoulos , C. Capdessus .
        7. Bouguerriou, N., Haritopoulos, M., Capdessus, C., et al: ‘Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: theory and application to the bearing defect diagnosis’, Mech. Syst. Signal Process., 2005, 19, pp. 12601281.
        . Mech. Syst. Signal Process. , 1260 - 1281
    8. 8)
      • W. Zhou , D. Chelidze .
        8. Zhou, W., Chelidze, D.: ‘Blind source separation based vibration mode identification’, Mech. Syst. Signal Process., 2007, 21, pp. 30723087.
        . Mech. Syst. Signal Process. , 3072 - 3087
    9. 9)
      • T.J. Zeng , Q.Y. Feng , X.H. Yuan .
        9. Zeng, T.J., Feng, Q.Y., Yuan, X.H., et al: ‘The multi-component signal model and learning algorithm of blind source separation’. Proc. of Progress in Electromagnetics Research Symp., Taipei, March 2013, pp. 2528.
        . Proc. of Progress in Electromagnetics Research Symp. , 25 - 28
    10. 10)
      • W. Cheng , S. Lee , Z. Zhang .
        10. Cheng, W., Lee, S., Zhang, Z., et al: ‘Independent component analysis based source number estimation and its comparison for mechanical systems’, J. Sound Vib., 2012, 331, (23), pp. 51535167.
        . J. Sound Vib. , 23 , 5153 - 5167
    11. 11)
      • B. Nadler .
        11. Nadler, B.: ‘Nonparametric detection of signals by information theoretic criteria: performance analysis and an improved estimator’, IEEE Trans. Signal Process., 2010, 58, pp. 27462756.
        . IEEE Trans. Signal Process. , 2746 - 2756
    12. 12)
      • B. Varun , R.B. Pachori .
        12. Varun, B., Pachori, R.B.: ‘Classification of seizure and nonseizure EEG signals using empirical mode decomposition’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (6), pp. 11351142.
        . IEEE Trans. Inf. Technol. Biomed. , 6 , 1135 - 1142
    13. 13)
      • Y. Lei , J. Lin , Z. He .
        13. Lei, Y., Lin, J., He, Z., et al: ‘A review on empirical mode decomposition in fault diagnosis of rotating machinery’, Mech. Syst. Signal Process., 2013, 35, (1), pp. 108126.
        . Mech. Syst. Signal Process. , 1 , 108 - 126
    14. 14)
      • G.F. Bin , J.J. Gao , X.J. Li .
        14. Bin, G.F., Gao, J.J., Li, X.J., et al: ‘Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network’, Mech. Syst. Signal Process., 2012, 27, pp. 696711.
        . Mech. Syst. Signal Process. , 696 - 711
    15. 15)
      • M.E. Celebi , H.A. Kingravi , P.A. Vela .
        15. Celebi, M.E., Kingravi, H.A., Vela, P.A.: ‘A comparative study of efficient initialization methods for the k-means clustering algorithm’, Expert Syst. Appl., 2013, 40, (1), pp. 200210.
        . Expert Syst. Appl. , 1 , 200 - 210
    16. 16)
      • A. Cichocki , S.i. Amari .
        16. Cichocki, A., Amari, S.i.: ‘Analysis of sparse representation and blind source separation’, Neural Comput., 2004, 16, pp. 11931234.
        . Neural Comput. , 1193 - 1234
    17. 17)
      • Y. Yang , S. Nagarajaiah .
        17. Yang, Y., Nagarajaiah, S.: ‘Output-only modal identification with limited sensors using sparse component analysis’, J. Sound Vib., 2013, 332, (19), pp. 47414765.
        . J. Sound Vib. , 19 , 4741 - 4765
    18. 18)
      • S. Qin , J. Guo , C. Zhu .
        18. Qin, S., Guo, J., Zhu, C.: ‘Sparse component analysis using time-frequency representations for operational modal analysis’, Sensors, 2015, 15, pp. 64976519.
        . Sensors , 6497 - 6519
    19. 19)
      • G. Soumi , S.K. Dubey .
        19. Soumi, G., Dubey, S.K.: ‘Comparative analysis of k-means and fuzzy c-means algorithms’, Int. J. Adv. Comput. Sci. Appl., 2013, 4, (4), pp. 3439.
        . Int. J. Adv. Comput. Sci. Appl. , 4 , 34 - 39
    20. 20)
      • M. Gong , Y. Liang , J. Shi .
        20. Gong, M., Liang, Y., Shi, J., et al: ‘Fuzzy c-means clustering with local information and kernel metric for image segmentation’, IEEE Trans. Image Process., 2013, 22, (2), pp. 573584.
        . IEEE Trans. Image Process. , 2 , 573 - 584
    21. 21)
      • K.L. Wu .
        21. Wu, K.L.: ‘Parameter selections of fuzzy c-means based on robust analysis’, World Acad. Sci. Eng. Technol., 2010, 65, pp. 554557.
        . World Acad. Sci. Eng. Technol. , 554 - 557
    22. 22)
      • T.C. Havens , J.C. Bezdek , C. Leckie .
        22. Havens, T.C., Bezdek, J.C., Leckie, C., et al: ‘Fuzzy c-means algorithms for very large data’, Fuzzy Syst., 2012, 20, (6), pp. 11301146.
        . Fuzzy Syst. , 6 , 1130 - 1146
    23. 23)
      • O. Yilmaz , S. Rickard .
        23. Yilmaz, O., Rickard, S.: ‘Blind separation of speech mixtures via time-frequency masking’, IEEE Trans. Signal Process., 2004, 52, pp. 18301847.
        . IEEE Trans. Signal Process. , 1830 - 1847
    24. 24)
      • P. Bofill , M. Zibulevsky .
        24. Bofill, P., Zibulevsky, M.: ‘Underdetermined blind source separation using sparse representations’, Signal Process., 2001, 81, pp. 23532362.
        . Signal Process. , 2353 - 2362
    25. 25)
      • S. Sheng .
        25. Sheng, S.: ‘Wind turbine gearbox condition monitoring round robin study–Vibration analysis’, Contract, 2012, 303, pp. 2753000.
        . Contract , 275 - 3000
    26. 26)
      • Li Wei , Hui-zhong. Yang .
        26. Wei, Li, Yang, Hui-zhong.: ‘A maximum entropy based non-linear blind source separation approach using a two-layer perceptron network’. 2013 10th IEEE Int. Conf. on Control and Automation (ICCA), 2013, pp. 978982.
        . 2013 10th IEEE Int. Conf. on Control and Automation (ICCA) , 978 - 982
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0982
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0982
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address