access icon free Performance evaluation of floating solar chimney power plant in Iran: estimation of technology progression and cost investigation

High direct solar radiation and the vast desert areas in Iran are the main factors to the attraction in using solar technologies such as floating solar chimney power plant (FSCPP) for electrical and thermal productions of energy. This article studies the performance of floating solar chimney technology for manufacturing purpose. In order to find the best area for the FSCPP, 14 different areas across the country are considered. The results revealed that FSCPP can produce 5–200 MW of electrical energy. Then a study was performed according to the return of finance rate, net price value, and finance return period criterions. The results showed that these power plants are able to be built in large scales of 100 and 200 MW of electricity with the annual capacity of 311 and 641 GW, respectively. However, a comparison between the cost analysis of two tested models shows that the 200 MW power plant with the cost of 14,273.64 Rials is more beneficial.‏

Inspec keywords: performance evaluation; solar power stations; costing; power generation economics

Other keywords: electrical energy production; power 5 MW to 200 MW; power 311 GW; power 641 GW; finance rate; floating solar chimney power plant; FSCPP; performance evaluation; high direct solar radiation; finance return period criterion; Iran; costing; technology progression estimation; net price value; thermal energy production; cost investigation

Subjects: Solar power stations and photovoltaic power systems; Power system management, operation and economics

References

    1. 1)
      • 6. Papageorgiou, C.D.: ‘Floating solar chimney technology: a solar proposal for China’. Proc. ISES Solar World Congress Conf., 2007, pp. 172176.
    2. 2)
      • 7. Von Backström, T.W., Fluri, T.P.: ‘Maximum fluid power condition in solar chimney power plants – an analytical approach’, Sol. Energy, 2006, 80, (11), pp. 14171423.
    3. 3)
      • 30. White, F.: ‘Fluid mechanics’ (McGraw-Hill, New York, 1999, 4th edn).
    4. 4)
      • 28. Maghrebi, M.J., Masoudi Nejad, R., Masoudi, S.: ‘Performance analysis of sloped solar chimney power plants in the southwestern region of Iran’, Int. J. Amb. Energy, 2016, early access.
    5. 5)
      • 15. Haaf, W., Friedrich, K., Mayr, G., et al: ‘Solar chimneys’, Int. J. Sol. Energy, 1983, 2, pp. 320.
    6. 6)
      • 10. Padki, M.M., Sherif, S.A.: ‘A mathematical model for solar chimney’. Proc. 1992 Int. Renewable Energy Conf.. University of Jordan, Faculty of Engineering and Technology, Amman, Jordan, 1992, vol 1, pp. 289294.
    7. 7)
      • 20. Asnaghi, A., Ladjevardi, S.M.: ‘Solar chimney power plant performance in Iran’, Renew. Sustain. Energy Rev., 2012, 16, (5), pp. 33833390.
    8. 8)
      • 25. Zhou, X., Yang, J.: ‘A novel solar thermal power plant with floating chimney stiffened onto a mountainside and potential of the power generation in China's deserts’, Heat Transfer Eng., 2009, 30, (5), pp. 400407.
    9. 9)
      • 17. Gannon, A.J., Von Backström, T.W.: ‘Solar chimney cycle analysis with system loss and solar collector performance’, J. Sol. Energy Eng., Trans. ASME., 2000, 122, (3), pp. 133137.
    10. 10)
      • 21. Papageorgiou, C.D.: ‘Floating solar chimney: the link towards a solar future’. Proc. of the ISES 2005 Solar World Congress Conf., 2005, pp. 631643.
    11. 11)
      • 3. Haff, W., Friedrich, K., Mayer, G., et al: ‘Solar chimneys part: principle and construction of the pilot plant in manzanararez’, Int. J. Sol. Energy, 1983, 2, pp. 320.
    12. 12)
      • 19. Asnaghi, A., Ladjevardi, S.M., Kashani, A.H., et al: ‘Solar chimney power plant performance analysis in the central regions of Iran’, J. Sol. Energy Eng., 2013, 135, (1), p. 011011.
    13. 13)
      • 16. Bernardes, M.A., dos, S., Voss, A., et al: ‘Thermal and technical analyses of solar chimney’, Sol. Energy, 2003, 75, (6), pp. 511524.
    14. 14)
      • 9. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part II: experimental and theoretical results and economic analysis’, Int. J.Energy Res., 1998, 22, pp. 443461.
    15. 15)
      • 24. Papageorgiou, C.D.: ‘Turbines and generators for floating solar chimney power stations’. Proc. of the IASTED Conf. European Power and Energy Systems, 2001, pp. 216.
    16. 16)
      • 26. Dhahri, A., Omri, A.: ‘A review of solar chimney power generation technology’, Int. J. Eng. Adv. Technol., 2013, 2, (3), pp. 117.
    17. 17)
      • 12. Pastohr, H., Kornandt, O., Gürlebeck, K.: ‘Numerical and analytical calculations of the temperature and flow field in the upwind power plant’, Int. J. Energy Res., 2004, 28, pp. 495510.
    18. 18)
      • 13. Mullet, L.B.: ‘The solar chimney overall efficiency, design and performance’, Int. J. Amb. Energy, 1987, 8, (1), pp. 3540.
    19. 19)
      • 22. Papageorgiou, C.D.: ‘External wind effects on floating solar chimney’. IASTED Proc. Power and Energy Systems, EuroPES, Conf., 2004, pp. 921963.
    20. 20)
      • 4. Schlaich, J., Bergermann, R., Schiel, W., et al: ‘Design of commercial solar updraft tower systems – utilization of solar induced convective flows for power generation’, Sol. Energy Eng., 2005, 127, pp. 117124.
    21. 21)
      • 32. Li, W., Wei, P., Zhou, X.: ‘A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant’, Energy Convers. Manage., 2014, 79, pp. 104113.
    22. 22)
      • 33. Bejan, A., Tsatsaronis, G.: ‘Thermal design & optimization’ (4th ed., John Wiley & Sons, 1999).
    23. 23)
      • 23. Papageorgiou, C.D.: ‘Optimum design for solar power stations with floating solar chimneys’. Proc. of the 32nd National Heat Transfer Conf. Kwangju, Korea, 2004.
    24. 24)
      • 18. Sangi, R.: ‘Performance evaluation of solar chimney power plants in Iran’, Renew. Sustain. Energy Rev., 2012, 16, (1), pp. 704710.
    25. 25)
      • 1. Zhou, X., Yang, J., Wang, F., et al: ‘Economic analysis of power generation from floating solar chimney power plant’, Renew. Sustain. Energy Rev., 2009, 13, (4), pp. 736749.
    26. 26)
      • 2. Günther, H.: ‘In hundred years-future energy supply of the world’ (Franckhsche Verlagshandlung, Stuttgart, 1931).
    27. 27)
      • 27. Nejad R., Masoudi: ‘A survey on performance of photovoltaic systems in Iran’, Iran. J. Energy Environ., 2015, 6, (2), pp. 7785.
    28. 28)
      • 29. Papageorgiou, C.D.: ‘Floating solar chimney technology’ (INTECH, Shanghai, 2010).
    29. 29)
      • 8. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part I: mathematical model development’, Int. J. Energy Res., 1998, 22, pp. 277288.
    30. 30)
      • 31. Guo, P.H., Li, J.Y., Wang, Y.: ‘Annual performance analysis of the solar chimney power plant in Sinkiang, China’, Energy Convers. Manage., 2014, 87, pp. 392399.
    31. 31)
      • 14. Schlaich, J.: ‘The solar chimney – electricity from the sun’ (Edition Axel Menges, Stuttgart, 1995).
    32. 32)
      • 11. Tingzhen, M., Wei, L., Guoliang, X.: ‘Analytical 301 and numerical investigation of the solar chimney power plant systems’, Int. J. Energy Res., 2006, 30, (11), pp. 861873.
    33. 33)
      • 5. Aurelio, M., Bernardes, S.: ‘Solar chimney power plant development and advancement’, in Rugescu, D. (Ed.): ‘Sol. Energy’ (INTECH, Croatia, 2010), pp. 173185.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0963
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0963
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Errata
An Erratum has been published for this content:
Corrigendum: Performance evaluation of floating solar chimney power plant in Iran: estimation of technology progression and cost investigation