http://iet.metastore.ingenta.com
1887

Performance evaluation of floating solar chimney power plant in Iran: estimation of technology progression and cost investigation

Performance evaluation of floating solar chimney power plant in Iran: estimation of technology progression and cost investigation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High direct solar radiation and the vast desert areas in Iran are the main factors to the attraction in using solar technologies such as floating solar chimney power plant (FSCPP) for electrical and thermal productions of energy. This article studies the performance of floating solar chimney technology for manufacturing purpose. In order to find the best area for the FSCPP, 14 different areas across the country are considered. The results revealed that FSCPP can produce 5–200 MW of electrical energy. Then a study was performed according to the return of finance rate, net price value, and finance return period criterions. The results showed that these power plants are able to be built in large scales of 100 and 200 MW of electricity with the annual capacity of 311 and 641 GW, respectively. However, a comparison between the cost analysis of two tested models shows that the 200 MW power plant with the cost of 14,273.64 Rials is more beneficial.‏

References

    1. 1)
      • 1. Zhou, X., Yang, J., Wang, F., et al: ‘Economic analysis of power generation from floating solar chimney power plant’, Renew. Sustain. Energy Rev., 2009, 13, (4), pp. 736749.
    2. 2)
      • 2. Günther, H.: ‘In hundred years-future energy supply of the world’ (Franckhsche Verlagshandlung, Stuttgart, 1931).
    3. 3)
      • 3. Haff, W., Friedrich, K., Mayer, G., et al: ‘Solar chimneys part: principle and construction of the pilot plant in manzanararez’, Int. J. Sol. Energy, 1983, 2, pp. 320.
    4. 4)
      • 4. Schlaich, J., Bergermann, R., Schiel, W., et al: ‘Design of commercial solar updraft tower systems – utilization of solar induced convective flows for power generation’, Sol. Energy Eng., 2005, 127, pp. 117124.
    5. 5)
      • 5. Aurelio, M., Bernardes, S.: ‘Solar chimney power plant development and advancement’, in Rugescu, D. (Ed.): ‘Sol. Energy’ (INTECH, Croatia, 2010), pp. 173185.
    6. 6)
      • 6. Papageorgiou, C.D.: ‘Floating solar chimney technology: a solar proposal for China’. Proc. ISES Solar World Congress Conf., 2007, pp. 172176.
    7. 7)
      • 7. Von Backström, T.W., Fluri, T.P.: ‘Maximum fluid power condition in solar chimney power plants – an analytical approach’, Sol. Energy, 2006, 80, (11), pp. 14171423.
    8. 8)
      • 8. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part I: mathematical model development’, Int. J. Energy Res., 1998, 22, pp. 277288.
    9. 9)
      • 9. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part II: experimental and theoretical results and economic analysis’, Int. J.Energy Res., 1998, 22, pp. 443461.
    10. 10)
      • 10. Padki, M.M., Sherif, S.A.: ‘A mathematical model for solar chimney’. Proc. 1992 Int. Renewable Energy Conf.. University of Jordan, Faculty of Engineering and Technology, Amman, Jordan, 1992, vol 1, pp. 289294.
    11. 11)
      • 11. Tingzhen, M., Wei, L., Guoliang, X.: ‘Analytical 301 and numerical investigation of the solar chimney power plant systems’, Int. J. Energy Res., 2006, 30, (11), pp. 861873.
    12. 12)
      • 12. Pastohr, H., Kornandt, O., Gürlebeck, K.: ‘Numerical and analytical calculations of the temperature and flow field in the upwind power plant’, Int. J. Energy Res., 2004, 28, pp. 495510.
    13. 13)
      • 13. Mullet, L.B.: ‘The solar chimney overall efficiency, design and performance’, Int. J. Amb. Energy, 1987, 8, (1), pp. 3540.
    14. 14)
      • 14. Schlaich, J.: ‘The solar chimney – electricity from the sun’ (Edition Axel Menges, Stuttgart, 1995).
    15. 15)
      • 15. Haaf, W., Friedrich, K., Mayr, G., et al: ‘Solar chimneys’, Int. J. Sol. Energy, 1983, 2, pp. 320.
    16. 16)
      • 16. Bernardes, M.A., dos, S., Voss, A., et al: ‘Thermal and technical analyses of solar chimney’, Sol. Energy, 2003, 75, (6), pp. 511524.
    17. 17)
      • 17. Gannon, A.J., Von Backström, T.W.: ‘Solar chimney cycle analysis with system loss and solar collector performance’, J. Sol. Energy Eng., Trans. ASME., 2000, 122, (3), pp. 133137.
    18. 18)
      • 18. Sangi, R.: ‘Performance evaluation of solar chimney power plants in Iran’, Renew. Sustain. Energy Rev., 2012, 16, (1), pp. 704710.
    19. 19)
      • 19. Asnaghi, A., Ladjevardi, S.M., Kashani, A.H., et al: ‘Solar chimney power plant performance analysis in the central regions of Iran’, J. Sol. Energy Eng., 2013, 135, (1), p. 011011.
    20. 20)
      • 20. Asnaghi, A., Ladjevardi, S.M.: ‘Solar chimney power plant performance in Iran’, Renew. Sustain. Energy Rev., 2012, 16, (5), pp. 33833390.
    21. 21)
      • 21. Papageorgiou, C.D.: ‘Floating solar chimney: the link towards a solar future’. Proc. of the ISES 2005 Solar World Congress Conf., 2005, pp. 631643.
    22. 22)
      • 22. Papageorgiou, C.D.: ‘External wind effects on floating solar chimney’. IASTED Proc. Power and Energy Systems, EuroPES, Conf., 2004, pp. 921963.
    23. 23)
      • 23. Papageorgiou, C.D.: ‘Optimum design for solar power stations with floating solar chimneys’. Proc. of the 32nd National Heat Transfer Conf. Kwangju, Korea, 2004.
    24. 24)
      • 24. Papageorgiou, C.D.: ‘Turbines and generators for floating solar chimney power stations’. Proc. of the IASTED Conf. European Power and Energy Systems, 2001, pp. 216.
    25. 25)
      • 25. Zhou, X., Yang, J.: ‘A novel solar thermal power plant with floating chimney stiffened onto a mountainside and potential of the power generation in China's deserts’, Heat Transfer Eng., 2009, 30, (5), pp. 400407.
    26. 26)
      • 26. Dhahri, A., Omri, A.: ‘A review of solar chimney power generation technology’, Int. J. Eng. Adv. Technol., 2013, 2, (3), pp. 117.
    27. 27)
      • 27. Nejad R., Masoudi: ‘A survey on performance of photovoltaic systems in Iran’, Iran. J. Energy Environ., 2015, 6, (2), pp. 7785.
    28. 28)
      • 28. Maghrebi, M.J., Masoudi Nejad, R., Masoudi, S.: ‘Performance analysis of sloped solar chimney power plants in the southwestern region of Iran’, Int. J. Amb. Energy, 2016, early access.
    29. 29)
      • 29. Papageorgiou, C.D.: ‘Floating solar chimney technology’ (INTECH, Shanghai, 2010).
    30. 30)
      • 30. White, F.: ‘Fluid mechanics’ (McGraw-Hill, New York, 1999, 4th edn).
    31. 31)
      • 31. Guo, P.H., Li, J.Y., Wang, Y.: ‘Annual performance analysis of the solar chimney power plant in Sinkiang, China’, Energy Convers. Manage., 2014, 87, pp. 392399.
    32. 32)
      • 32. Li, W., Wei, P., Zhou, X.: ‘A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant’, Energy Convers. Manage., 2014, 79, pp. 104113.
    33. 33)
      • 33. Bejan, A., Tsatsaronis, G.: ‘Thermal design & optimization’ (4th ed., John Wiley & Sons, 1999).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0963
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0963
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address