access icon free Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers

The utilisation of renewable sources brings many benefits to electric power systems, but also some challenges such as the impact that renewable power plants employing power electronics have on the grid, which is gaining importance as the penetration of this type of generating stations increases, driven by the construction of large wind or solar photovoltaic (PV) power plants. This study analyses the impact of large-scale PV power plants on a transmission grid for different penetration levels. The analysis considers power plants formed by a number of power converters employing synchronous power controllers (SPCs), that allow them to have a harmonious interaction with the grid, and compares their performance with that of conventional power converter controllers, assuming in both cases that the power plants participate in frequency and voltage regulation. The study addresses both the small-signal stability of the system and its response to large disturbances that alter the active power balance and frequency stability. The results of the analysis show that PV power plants using SPCs are able to limit frequency deviations, improve the oscillation damping, and reduce the stress of other generating units, thus having a beneficial impact on the power system.

Inspec keywords: power control; solar power stations; power grids; power system stability; power transmission; wind power plants; frequency stability; voltage control; photovoltaic power systems; power generation control

Other keywords: generating stations; frequency stability; SPCs; voltage regulation; solar photovoltaic power plant penetration; renewable power plants; transmission grid; power electronics; renewable source utilisation; wind power plants; small-signal stability; electric power systems; large-scale PV power plants; power converter controllers; power system stability analysis; synchronous power controllers; frequency regulation; active power balance

Subjects: Power transmission, distribution and supply; Wind power plants; Voltage control; Control of electric power systems; Solar power stations and photovoltaic power systems; Power system control; Frequency control; Power and energy control

References

    1. 1)
      • 18. Ghafouri, A., Milimonfared, J., Gharehpetian, G.B.: ‘Coordinated control of distributed energy resources and conventional power plants for frequency control of power systems’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 104114.
    2. 2)
      • 1. International Energy Agency: ‘Renewable energy medium-term market report 2016: Executive summary’ (IEA Publications, 2016), available at http://www.iea.org/Textbase/npsum/MTrenew2016SUM.pdf.
    3. 3)
      • 5. Eftekharnejad, S., Heydt, G.T., Vittal, V.: ‘Optimal generation dispatch with high penetration of photovoltaic generation’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 10131020.
    4. 4)
      • 3. Kabouris, J., Kanellos, F.D.: ‘Impacts of large-scale wind penetration on designing and operation of electric power systems’, IEEE Trans. Sustain. Energy, 2010, 1, (2), pp. 107114.
    5. 5)
      • 12. Yagami, M., Kimura, N., Tsuchimoto, M., et al: ‘Power system transient stability analysis in the case of high-penetration photovoltaics’. IEEE PowerTech, Grenoble, France, June 2013, pp. 16.
    6. 6)
      • 29. Rodriguez Cortés, P., Candela García, J.I., Rocabert Delgado, J., et al: ‘Synchronous power controller for a generating system based on static power converters’. International Patent WO 2012/117131 A1, September 2012, Priority date: 18 February 2011, Licensed by: Abengoa S.A..
    7. 7)
      • 10. Kawabe, K., Tanaka, K.: ‘Impact of dynamic behavior of photovoltaic power generation systems on short-term voltage stability’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 34163424.
    8. 8)
      • 26. Tamrakar, U., Galipeau, D., Tonkoski, R., et al: ‘Improving transient stability of photovoltaic-hydro microgrids using virtual synchronous machines’. IEEE PowerTech, Eindhoven, Netherlands, June 2015, pp. 16.
    9. 9)
      • 13. Gautam, D., Vittal, V., Harbour, T.: ‘Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 14261434.
    10. 10)
      • 24. Zhong, Q.-C., Nguyen, P.-L., Ma, Z., et al: ‘Self-synchronized synchronverters: inverters without a dedicated synchronization unit’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 617630.
    11. 11)
      • 34. Rodriguez, P., Pou, J., Bergas, J., et al: ‘Decoupled double synchronous reference frame PLL for power converters control’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 584592.
    12. 12)
      • 7. Omran, W.A., Kazerani, M., Salama, M.M.A.: ‘Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 318327.
    13. 13)
      • 30. Remon, D., Cantarellas, A.M., Rodriguez, P.: ‘Equivalent model of large-scale synchronous photovoltaic power plants’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 50295040.
    14. 14)
      • 22. Torres, M., Lopes, L.A.C.: ‘Virtual synchronous generator control in autonomous wind-diesel power systems’. IEEE Electrical Power Energy Conf. (EPEC), Montreal, Canada, October 2009, pp. 16.
    15. 15)
      • 14. Miao, Z.: ‘Impact of unbalance on electrical and torsional resonances in power electronic interfaced wind energy systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 31053113.
    16. 16)
      • 28. Remon, D., Cantarellas, A.M., Elsaharty, M.A.A., et al: ‘Synchronous PV support to an isolated power system’. IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, September 2015, pp. 19821987.
    17. 17)
      • 17. Yan, R., Saha, T.K., Modi, N., et al: ‘The combined effects of high penetration of wind and PV on power system frequency response’, Appl. Energy, 2015, 145, pp. 320330.
    18. 18)
      • 25. Shintai, T., Miura, Y., Ise, T.: ‘Oscillation damping of a distributed generator using a virtual synchronous generator’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 668676.
    19. 19)
      • 19. Delille, G., Francois, B., Malarange, G.: ‘Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 931939.
    20. 20)
      • 32. Adamczyk, A., Altin, M., Goksu, O., et al: ‘Generic 12-bus test system for wind power integration studies’. IEEE European Conf. on Power Electronics and Applications (EPE), Lille, France, September 2013, pp. 16.
    21. 21)
      • 23. Chen, Y., Hesse, R., Turschner, D., et al: ‘Improving the grid power quality using virtual synchronous machines’. IEEE Int. Power Engineering, Energy and Electrical Drives (POWERENG), Torremolinos, Spain, May 2011, pp. 16.
    22. 22)
      • 2. European Wind Energy Association: ‘Wind energy scenarios for 2030’. 2015, available at http://www.ewea.org/fileadmin/files/library/publications/reports/EWEA-Wind-energy-scenarios-2030.pdf.
    23. 23)
      • 4. Vittal, E., Keane, A.: ‘Identification of critical wind farm locations for improved stability and system planning’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 29502958.
    24. 24)
      • 11. Edrah, M., Lo, K.L., Anaya-Lara, O.: ‘Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 759766.
    25. 25)
      • 35. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    26. 26)
      • 9. Chidurala, A., Saha, T.K., Mithulananthan, N.: ‘Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks – learning from an urban photovoltaic network’, IET Renew. Power Gener., 2016, 10, (4), pp. 485494.
    27. 27)
      • 27. Rodriguez, P., Candela, I., Luna, A.: ‘Control of PV generation systems using the synchronous power controller’. IEEE Energy Conversion Congress and Exposition (ECCE), Denver, Colorado USA, September 2013, pp. 993998.
    28. 28)
      • 21. Van Wesenbeeck, M.P.N., De Haan, S.W.H., Varela, P., et al: ‘Grid tied converter with virtual kinetic storage’. IEEE PowerTech, Bucharest, Romania, June 2009, pp. 17.
    29. 29)
      • 15. Eftekharnejad, S., Vittal, V., Heydt, G.T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    30. 30)
      • 6. Martín-Martínez, S., Gómez-Lazaro, E., Molina-Garcia, A., et al: ‘Impact of wind power curtailments on the Spanish power system operation’. IEEE PES General Meeting, National Harbor, Maryland USA, July 2014, pp. 15.
    31. 31)
      • 33. WECC Renewable Energy Modeling Task Force: ‘Generic solar photovoltaic system dynamic simulation model specification’. 2012, available at https://www.wecc.biz/Reliability/WECC%20Solar%20PV%20Dynamic%20Model%20Specification%20-%20September%202012.pdf.
    32. 32)
      • 16. Nguyen, N., Mitra, J.: ‘An analysis of the effects and dependency of wind power penetration on system frequency regulation’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 354363.
    33. 33)
      • 8. Hossain, M.I., Yan, R., Saha, T.K.: ‘Investigation of the interaction between step voltage regulators and large-scale photovoltaic systems regarding voltage regulation and unbalance’, IET Renew. Power Gener., 2016, 10, (3), pp. 299309.
    34. 34)
      • 31. Jiang, S., Annakkage, U.D., Gole, A.M.: ‘A platform for validation of FACTS models’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 484491.
    35. 35)
      • 20. Miller, N.W., Clark, K., Shao, M.: ‘Frequency responsive wind plant controls: impacts on grid performance’. IEEE PES General Meeting, Detroit, Michigan USA, July 2011, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0904
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0904
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading