Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Chance-constrained programming for day-ahead scheduling of variable wind power amongst conventional generation mix and energy storage

This study presents a day-ahead scheduling of a generation portfolio incorporating large shares of intermittent wind generation. The scheduling utilises the cycling of conventional generation as well as the dispatch of energy storage (ES) to mitigate the impact of net load ramps. Inherent system flexibility, expressed as a chance constraint, is quantified in terms of ramping capability and operating reserves of conventional generation and ES. The flexibility chance constraint is then factorised into a set of linear deterministic inequalities, to preserve the mixed-integer linear programming structure of the resulting problem. Numerical simulations are performed and results are analysed for IEEE 24-bus and 118-bus systems. Test results show that implementation of ES improves the flexibility of the system, in terms of alleviation of the cycling of thermal generation as well as wind generation curtailment.

References

    1. 1)
      • 13. Yu, H., Chung, C.Y., Wong, K.P., et al: ‘A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 15681576.
    2. 2)
      • 14. Wu, H., Shahidehpour, M., Khodayar, M.E.: ‘Hourly demand response in day-ahead scheduling considering generating unit ramping cost’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 24462454.
    3. 3)
      • 18. Wang, S.J., Shahidehpour, S.M., Kirschen, D.S., et al: ‘Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 12941301.
    4. 4)
      • 15. Wang, C., Shahidehpour, S.M.: ‘Ramp-rate limits in unit commitment and economic dispatch incorporating rotor fatigue effect’, IEEE Trans. Power Syst., 1994, 9, (3), pp. 15391545.
    5. 5)
      • 28. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: ‘Mixed integer linear programming formulations for probabilistic constraints’, Oper. Res. Lett., 2012, 40, (3), pp. 153158.
    6. 6)
      • 7. Wang, Q., Guan, Y., Wang, J.: ‘A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 206215.
    7. 7)
      • 6. Wang, C., Liu, F., Wang, J., et al: ‘Robust risk-constrained unit commitment with large-scale wind generation: an adjustable uncertainty set approach’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 723733.
    8. 8)
      • 4. Nikoobakht, A., Mardaneh, M., Aghaei, J., et al: ‘Flexible power system operation accommodating uncertain wind power generation using transmission topology control: an improved linearised ac scuc model’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 142153.
    9. 9)
      • 23. Fabbri, A., Román, T.G.S., Abbad, J.R., et al: ‘Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 14401446.
    10. 10)
      • 10. Shukla, A., Singh, S.N.: ‘Multi-objective unit commitment with renewable energy using hybrid approach’, IET Renew. Power Gener., 2016, 10, (3), pp. 327338.
    11. 11)
      • 17. Albadi, M.H., El-Saadany, E.F.: ‘Comparative study on impacts of wind profiles on thermal units scheduling costs’, IET Renew. Power Gener., 2011, 5, (1), pp. 2635.
    12. 12)
      • 33. Wang, C., Shahidehpour, S.M.: ‘Effects of ramp-rate limits on unit commitment and economic dispatch’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 13411350.
    13. 13)
      • 24. Restrepo, J.F., Galiana, F.D.: ‘Assessing the yearly impact of wind power through a new hybrid deterministic/stochastic unit commitment’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 401410.
    14. 14)
      • 30. Carrión, M., Arroyo, J.M.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13711378.
    15. 15)
      • 5. Nikoobakht, A., Aghaei, J., Mardaneh, M.: ‘Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory’, Energy, 2016, 114, pp. 846861.
    16. 16)
      • 21. Tan, W.-S., Shaaban, M.: ‘A hybrid stochastic/deterministic unit commitment based on projected disjunctive milp reformulation’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 52005201.
    17. 17)
      • 26. ‘Business requirements specification – flexible ramping product’, http://www.caiso.com/Documents/BusinessRequirementsSpecification-FlexibleRampingProduct.pdf, accessed July 2017.
    18. 18)
      • 27. Szántai, T.: ‘A computer code for solution of probabilistic-constrained stochastic programming problems’, in Ermoliev, Y., Wets, R.J-B. (Eds.): ‘Numerical Techniques for Stochastic Optimization’ (Springer-Verlag, New York, 1988), pp. 229235.
    19. 19)
      • 32. Bilionton, R., Li, W.: ‘Reliability assessment of electrical power systems using Monte Carlo methods’ (Plenum Press, New York, 1994).
    20. 20)
      • 8. Pozo, D., Contreras, J.: ‘A chance-constrained unit commitment with an n-k security criterion and significant wind generation’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28422851.
    21. 21)
      • 2. Troy, N., Denny, E., Malley, M.O.: ‘Base-load cycling on a system with significant wind penetration’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 10881097.
    22. 22)
      • 25. Lannoye, E., Flynn, D., O'Malley, M.: ‘Transmission, variable generation, and power system flexibility’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 5766.
    23. 23)
      • 16. Shrestha, G.B., Kai, S., Goel, L.: ‘Strategic self-dispatch considering ramping costs in deregulated power markets’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 15751581.
    24. 24)
      • 20. Wen, Y., Guo, C., Pandzic, H., et al: ‘Enhanced security-constrained unit commitment with emerging utility-scale energy storage’, IEEE Trans. Power Syst., 2015, 31, (1), pp. 652662.
    25. 25)
      • 22. ‘A report to the ontario power authority (OPA) wind generation data’, http://www.powerauthority.on.ca/integrated-power-system-plan/simulated-wind-generation-data, accessed July 2017.
    26. 26)
      • 31. Yong, F., Shahidehpour, M., Zuyi, L.: ‘Security-constrained unit commitment with ac constraints’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 10011013.
    27. 27)
      • 29. Wong, P., Albrecht, P., Allan, R., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020.
    28. 28)
      • 12. Zhang, H., Li, P.: ‘Chance constrained programming for optimal power flow under uncertainty’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 24172424.
    29. 29)
      • 19. Pozo, D., Contreras, J., Sauma, E.E.: ‘Unit commitment with ideal and generic energy storage units’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 29742984.
    30. 30)
      • 11. Zheng, Q.P., Wang, J., Liu, A.L.: ‘Stochastic optimization for unit commitment: a review’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19131924.
    31. 31)
      • 1. Van den Bergh, K., Delarue, E.: ‘Cycling of conventional power plants: technical limits and actual costs’, Energy Convers. Manag., 2015, 97, pp. 7077.
    32. 32)
      • 9. Ozturk, U.A., Mazumdar, M., Norman, B.A.: ‘A solution to the stochastic unit commitment problem using chance constrained programming’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 15891598.
    33. 33)
      • 3. Nasrolahpour, E., Ghasemi, H.: ‘A stochastic security constrained unit commitment model for reconfigurable networks with high wind power penetration’, Electr. Power Syst. Res., 2015, 121, pp. 341350.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0875
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0875
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address