http://iet.metastore.ingenta.com
1887

Handshaking V2G strategy for grid connected PV assisted charging station

Handshaking V2G strategy for grid connected PV assisted charging station

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a novel handshaking approach to reduce transformer and line overloading using plug-in electric vehicles (PEVs) connected to a photovoltaic (PV) assisted charging station (CS) via vehicle-to-grid (V2G) control strategy. The discharging behaviour of PEVs on receiving an aggregator command is carried out using a priority index function under two variant of customer command: (i) normal charging; and (ii) fast charging. Moreover, it is carried out to maximise aggregator profit in an optimal fashion by broadcasting to each CS and scheduling their dispatch based on the available power feedback from each CS. The energy command compliance for handshaking is ensured in a sturdy manner using a contingency approach considering the uncertain mobile behaviour of PEVs. Owing to the highly unlikely travelling behaviour of PEVs, a novel distributed consensus-based power restoration between a fleet of CSs is proposed to endure handshaking using average power contribution from the rest of the CS if contingency fails for any CS. The proposed strategy has been tested on a 1 kVA FPGA-based experimental setup to validate the proposed control scheme under different scenarios.

References

    1. 1)
      • M. Ansari , A.T. Al-Awami , E. Sortomme .
        1. Ansari, M., Al-Awami, A.T., Sortomme, E., et al: ‘Coordinated bidding of ancillary services for vehicle-to-grid using fuzzy optimization’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 261270.
        . IEEE Trans. Smart Grid , 1 , 261 - 270
    2. 2)
      • S. Han , S. Han , K. Sezaki .
        2. Han, S., Han, S., Sezaki, K.: ‘Development of an optimal vehicle-to-grid aggregator for frequency regulation’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 6572.
        . IEEE Trans. Smart Grid , 1 , 65 - 72
    3. 3)
      • S. Mishra , S. Sahoo , D.R. Pullaguram .
        3. Mishra, S., Sahoo, S., Pullaguram, D.R.: ‘A systematic state of charge based V2G charging framework for frequency response’, IFAC-PapersOnLine, 2015, 48, (30), pp. 3136.
        . IFAC-PapersOnLine , 30 , 31 - 36
    4. 4)
      • Z. Luo , Z. Hu , Y. Song .
        4. Luo, Z., Hu, Z., Song, Y., et al: ‘Optimal coordination of plug-in electric vehicles in power grids with cost-benefit analysis—Part I: Enabling techniques’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 35463555.
        . IEEE Trans. Power Syst. , 4 , 3546 - 3555
    5. 5)
      • W. Kempton , J. Tomić .
        5. Kempton, W., Tomić, J.: ‘Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy’, J. Power Sources., 2005, 144, (1), pp. 280294.
        . J. Power Sources. , 1 , 280 - 294
    6. 6)
      • E.L. Karfopoulos , K.A. Panourgias , N.D. Hatziargyriou .
        6. Karfopoulos, E.L., Panourgias, K.A., Hatziargyriou, N.D.: ‘Distributed coordination of electric vehicles providing V2G regulation services’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 28342846.
        . IEEE Trans. Power Syst. , 4 , 2834 - 2846
    7. 7)
      • C. Pang , P. Dutta , M. Kezunovic .
        7. Pang, C., Dutta, P., Kezunovic, M.: ‘BEVs/PHEVs as dispersed energy storage for V2B uses in the smart grid’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 473482.
        . IEEE Trans. Smart Grid , 1 , 473 - 482
    8. 8)
      • F. Berthold , A. Ravey , B. Blunier .
        8. Berthold, F., Ravey, A., Blunier, B., et al: ‘Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality’, IEEE Trans. Transp. Electr., 2015, 1, (2), pp. 168177.
        . IEEE Trans. Transp. Electr. , 2 , 168 - 177
    9. 9)
      • S. Rivera , B. Wu , S. Kouro .
        9. Rivera, S., Wu, B., Kouro, S., et al: ‘Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 19992009.
        . IEEE Trans. Ind. Electron. , 4 , 1999 - 2009
    10. 10)
      • S. Gao , K. Chau , C. Liu .
        10. Gao, S., Chau, K., Liu, C., et al: ‘Integrated energy management of plug-n electric vehicles in power grid with renewables’, IEEE Trans. Veh. Technol., 2014, 63, (7), pp. 30193027.
        . IEEE Trans. Veh. Technol. , 7 , 3019 - 3027
    11. 11)
      • U.C. Chukwu , S.M. Mahajan .
        11. Chukwu, U.C., Mahajan, S.M.: ‘V2G parking lot with PV rooftop for capacity enhancement of a distribution system’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 119127.
        . IEEE Trans. Sustain. Energy , 1 , 119 - 127
    12. 12)
      • N.A. Ruhi , N. Chen , K. Dvijotham .
        12. Ruhi, N.A., Chen, N., Dvijotham, K., et al: ‘Opportunities for price manipulation by aggregators in electricity markets’, ACM SIGMETRICS Perform. Eval. Rev., 2016, 44, (2), pp. 4951.
        . ACM SIGMETRICS Perform. Eval. Rev. , 2 , 49 - 51
    13. 13)
      • E.S. Rigas , S.D. Ramchurn , N. Bassiliades .
        13. Rigas, E.S., Ramchurn, S.D., Bassiliades, N., et al: ‘Congestion management for urban EV charging systems’. Smart Grid Communications (SmartGridComm), 2013 IEEE Int. Conf. on, 2013, pp. 121126.
        . Smart Grid Communications (SmartGridComm), 2013 IEEE Int. Conf. on , 121 - 126
    14. 14)
      • K. Kaur , R. Rana , N. Kumar .
        14. Kaur, K., Rana, R., Kumar, N., et al: ‘A colored petri net based frequency support scheme using fleet of electric vehicles in smart grid environment’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 46384649.
        . IEEE Trans. Power Syst. , 6 , 4638 - 4649
    15. 15)
      • A. Schuller , B. Dietz , C.M. Flath .
        15. Schuller, A., Dietz, B., Flath, C.M., et al: ‘Charging strategies for battery electric vehicles: economic Benchmark and V2G potential’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 20142022.
        . IEEE Trans. Power Syst. , 5 , 2014 - 2022
    16. 16)
      • R.J. Bessa , M.A. Matos , F.J. Soares .
        16. Bessa, R.J., Matos, M.A., Soares, F.J., et al: ‘Optimized bidding of a EV aggregation agent in the electricity market’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 443452.
        . IEEE Trans. Smart Grid , 1 , 443 - 452
    17. 17)
      • R.J. Bessa , M.A. Matos .
        17. Bessa, R.J., Matos, M.A.: ‘The role of an aggregator agent for EV in the electricity market’. 7th Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2010), 2010, pp. 19.
        . 7th Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2010) , 1 - 9
    18. 18)
      • C. Goebel , H.A. Jacobsen .
        18. Goebel, C., Jacobsen, H.A.: ‘Aggregator-controlled EV charging in pay-as-Bid reserve markets with strict delivery constraints’, IEEE Trans. Power Syst., 2016, PP, (99), pp. 115.
        . IEEE Trans. Power Syst. , 99 , 1 - 15
    19. 19)
      • M.N. Mojdehi , P. Ghosh .
        19. Mojdehi, M.N., Ghosh, P.: ‘An approach to engage EVs for frequency regulation: Aggregator perspective’. 2015 IEEE Conf. on Technologies for Sustainability (SusTech), 2015, pp. 229233.
        . 2015 IEEE Conf. on Technologies for Sustainability (SusTech) , 229 - 233
    20. 20)
      • B. Sun , T. Dragicevic , F.D. Freijedo .
        20. Sun, B., Dragicevic, T., Freijedo, F.D., et al: ‘A control algorithm for electric vehicle fast charging stations equipped with flywheel energy storage systems’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 66746685.
        . IEEE Trans. Power Electron. , 9 , 6674 - 6685
    21. 21)
      • N. Liu , Q. Chen , X. Lu .
        21. Liu, N., Chen, Q., Lu, X., et al: ‘A charging strategy for PV-based battery switch stations considering service availability and self-consumption of PV energy’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 48784889.
        . IEEE Trans. Ind. Electron. , 8 , 4878 - 4889
    22. 22)
      • Q. Chen , N. Liu , C. Wang .
        22. Chen, Q., Liu, N., Wang, C., et al: ‘Optimal power utilizing strategy for PV-based EV charging stations considering Real-time price’. , 2014 IEEE Conf. and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014. pp. 16.
        . , 2014 IEEE Conf. and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific) , 1 - 6
    23. 23)
      • Q. Chen , N. Liu , X. Lu .
        23. Chen, Q., Liu, N., Lu, X., et al: ‘A heuristic charging strategy for real-time operation of PV-based charging station for electric vehicles’. 2014 IEEE Innovative Smart Grid Technologies – Asia, 2014, pp. 465469.
        . 2014 IEEE Innovative Smart Grid Technologies – Asia , 465 - 469
    24. 24)
      • P. Baran .
        24. Baran, P.: ‘On distributed communications networks’, IEEE Trans. Commun. Syst., 1964, 12, (1), pp. 19.
        . IEEE Trans. Commun. Syst. , 1 , 1 - 9
    25. 25)
      • M.N. Mojdehi , P. Ghosh .
        25. Mojdehi, M.N., Ghosh, P.: ‘An approach to engage EVs for frequency regulation: Aggregator perspective’. 2015 IEEE Conf. on Technologies for Sustainability (SusTech), 2015, pp. 229233.
        . 2015 IEEE Conf. on Technologies for Sustainability (SusTech) , 229 - 233
    26. 26)
      • K. Meng , H.G. Wang , Z. Dong .
        26. Meng, K., Wang, H.G., Dong, Z., et al: ‘Quantum-inspired particle swarm optimization for valve-point economic load dispatch’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 215222.
        . IEEE Trans. Power Syst. , 1 , 215 - 222
    27. 27)
      • E. Burian , D. Yoerger , A. Bradley .
        27. Burian, E., Yoerger, D., Bradley, A., et al: ‘Gradient search with autonomous under-water vehicles using scalar measurements’.  Proc. of the 1996 Symp. on Autonomous Underwater Vehicle Technology, AUV'96.1996. pp. 8698.
        .  Proc. of the 1996 Symp. on Autonomous Underwater Vehicle Technology, AUV'96. , 86 - 98
    28. 28)
      • Z. Li , Z. Duan , G. Chen .
        28. Li, Z., Duan, Z., Chen, G.: ‘Dynamic consensus of linear multi-agent systems’, IET Control Theory Applic., 2011, 5, (1), pp. 1928.
        . IET Control Theory Applic. , 1 , 19 - 28
    29. 29)
      • R. Olfati-Saber .
        29. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: Algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420.
        . IEEE Trans. Autom. Control , 3 , 401 - 420
    30. 30)
      • C. Bhende , S. Mishra , S.G.. Malla .
        30. Bhende, C., Mishra, S., Malla, S.G..: ‘Permanent magnet synchronous generator-based standalone wind energy supply system’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 361373.
        . IEEE Trans. Sustain. Energy , 4 , 361 - 373
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0853
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0853
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address