Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Estimation of technology progression and cost analysis for a floating solar chimney power plant: a special case – Isfahan city in Iran

Regarding the growing need for cheap and unlimited energy sources, renewable energies have been considered. Solar energy is one of the main sources of energy. This article studies the performance of floating solar chimney technology for the manufacturing purpose in Isfahan city. In this purpose, Isfahan city is considered to determine the performance of floating solar chimney power plant (SCPP) to build this type of SCPP. The results have shown that the floating solar chimney power plant can produce 5–200 MW of electrical energy in Isfahan city. Then a study is performed according to return of finance rate, net price value, and finance return period criteria. The results have shown that these power plants are able to be built in large scales of 100 and 200 MW of electricity with an annual capacity of 381 and 712 GW with 44 and 60%, respectively. However, a comparison between the cost analyses of two tested models shows that the 200 MW power plant with a cost of 13,941.52 milliard Rials is more beneficial in Isfahan city.‏

References

    1. 1)
      • 19. Ghalamchi, M., Kasaeian, A., Ghalamchi, M., et al: ‘Optimizing of solar chimney performance using electrohydrodynamic system based on array geometry’, Energy Convers. Manage., 2017, 135, pp. 261269.
    2. 2)
      • 23. Zhou, X., Xu, Y.: ‘Solar updraft tower power generation’, Sol. Energy, 2016, 128, pp. 95125.
    3. 3)
      • 17. Gannon, A.J., Von Backström, T.W.: ‘Solar chimney cycle analysis with system loss and solar collector performance’, J. Solar Energy Eng., Trans. ASME, 2000, 122, (3), pp. 133137.
    4. 4)
      • 9. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part II: experimental and theoretical results and economic analysis’, Int. J. Energy Res., 1998, 22, pp. 443461.
    5. 5)
      • 16. Bernardes, M.A., dos, S., Voss, A., et al: ‘Thermal and technical analyses of solar chimney’, Sol. Energy, 2003, 75, (6), pp. 511524.
    6. 6)
      • 20. Ming, T., Gong, T., de Richter, R. K., et al: ‘Freshwater generation from a solar chimney power plant’, Energy Convers. Manage., 2016, 113, pp. 189200.
    7. 7)
      • 7. Von Backström, T.W., Fluri, T.P.: ‘Maximum fluid power condition in solar chimney power plants – an analytical approach’, Sol. Energy, 2006, 80, (11), pp. 14171423.
    8. 8)
      • 13. Mullet, L.B.: ‘The solar chimney overall efficiency, design and performance’, Int. J. Amb. Energy, 1987, 8, (1), pp. 3540.
    9. 9)
      • 21. Mahal, S. K., Alimin, A. J.: ‘A review of the hybrid solar chimney and water desalination systems for simultaneous production of electricity and fresh water’, Int. Rev. Mech. Eng, 2016, 10, (6), pp. 419436.
    10. 10)
      • 3. Haff, W., Friedrich, K., Mayer, G., et al: ‘Solar chimneys part: principle and construction of the pilot plant in manzanararez’, Int. J. Solar Energy, 1983, 2, pp. 320.
    11. 11)
      • 28. Gong, T., Ming, T., Huang, X., et al: ‘Numerical analysis on a solar chimney with an inverted U-type cooling tower to mitigate urban air pollution’, Sol. Energy, 2017, 147, pp. 6882.
    12. 12)
      • 35. Nejad R., Masoudi: ‘A survey on performance of photovoltaic systems in Iran’, Iranica J. Energy Environ., 2015, 6, (2), pp. 7785.
    13. 13)
      • 38. White, F.: ‘Fluid Mechanics’ (McGraw-Hill, New York, 1999, 4th edn).
    14. 14)
      • 6. Papageorgiou, C.D..: ‘Floating solar chimney technology: a solar proposal for China’. Proc. ISES Solar World Congress Conf., Heidelberg, 2007, pp. 172176.
    15. 15)
      • 31. Papageorgiou, C. D.: ‘Optimum design for solar power stations with floating solar chimneys’. Proc. of the 32nd National Heat Transfer Conf. Kwangju, Korea, 2004.
    16. 16)
      • 8. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part I: mathematical model development’, Int. J. Energy Res., 1998, 22, pp. 277288.
    17. 17)
      • 11. Ming, T., Liu, W., Xu, G.: ‘Analytical 301 and numerical investigation of the solar chimney power plant systems’, Int. J. Energy Res., 2006, 30, (11), pp. 861873.
    18. 18)
      • 27. Ming, T., Davies, P., Liu, W., et al: ‘Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis’, Prog. Energy Combust Sci., 2017, 60, pp. 6896.
    19. 19)
      • 15. Haaf, W., Friedrich, K., Mayr, G., et al: ‘Solar chimneys’, Int. J. Solar Energy, 1983, 2, pp. 320.
    20. 20)
      • 32. Papageorgiou, C.D.: ‘Turbines and generators for floating solar chimney power stations’. Proc. of the IASTED Conf. on European Power and Energy Systems, Benalmadena, 2001, pp. 216.
    21. 21)
      • 30. Papageorgiou, C. D.: ‘External wind effects on floating solar chimney’. IASTED Proc. of Power and Energy Systems, EuroPES, Conf., Rhodes, 2004, pp. 921963.
    22. 22)
      • 34. Dhahri, A., Omri, A.: ‘A review of solar chimney power generation technology’, Int. J. Eng. Adv. Technol., 2013, 2, (3), pp. 117.
    23. 23)
      • 18. Jafari, A., Poshtiri, A. H.: ‘Passive solar cooling of single-storey buildings by an adsorption chiller system combined with a solar chimney’, J. Clean Prod., 2017, 141, pp. 662682.
    24. 24)
      • 29. Papageorgiou, C. D.: ‘Floating solar chimney: the link towards a solar future’. Proc. of the ISES 2005 Solar World Congress Conf., Orlando, FL, 2005, pp. 631643.
    25. 25)
      • 37. Papageorgiou, C. D.: ‘Floating solar chimney technology’ (INTECH, Shanghai, 2010).
    26. 26)
      • 24. Mehrpooya, M., Shahsavan, M., Sharifzadeh, M. M. M.: ‘Modeling, energy and exergy analysis of solar chimney power plant – Tehran climate data case study’, Energy, 2016, 115, pp. 257273.
    27. 27)
      • 5. Aurelio, M., Bernardes, S.: ‘Solar chimney power plant development and advancement’, (INTECH, Shanghai, 2010), pp. 173185.
    28. 28)
      • 25. Shirvan, K. M., Mirzakhanlari, S., Mamourian, M., et al: ‘Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: a sensitivity analysis and numerical simulation’, Appl. Energy, 2017, 195, pp. 725737.
    29. 29)
      • 2. Günther, H.: ‘In hundred years-future energy supply of the world’ (Franckhsche Verlagshandlung, Stuttgart, 1931).
    30. 30)
      • 33. Zhou, X., Yang, J.: ‘A novel solar thermal power plant with floating chimney stiffened onto a mountainside and potential of the power generation in China's deserts’, Heat Transf. Eng., 2009, 30, (5), pp. 400407.
    31. 31)
      • 4. Schlaich, J., Bergermann, R., Schiel, W., et al: ‘Design of commercial solar updraft tower systems – utilization of solar induced convective flows for power generation’, Solar Energy Eng., 2005, 127, pp. 117124.
    32. 32)
      • 36. Maghrebi, M. J., Masoudi Nejad, R., Masoudi, S.: ‘Performance analysis of sloped solar chimney power plants in the southwestern region of Iran’, Int. J. Ambient Energy, 2017, 38, (6), pp. 542549.
    33. 33)
      • 26. Hu, S., Leung, D. Y., Chan, J. C.: ‘Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation’, Appl. Energy, 2017, 204, pp. 948957.
    34. 34)
      • 10. Padki, M.M., Sherif, S.A.: ‘A mathematical model for solar chimney’. Proc. of 1992 Int. Renewable Energy Conf., University of Jordan, Faculty of Engineering and Technology, Amman, Jordan, 1992, vol. 1, pp. 289294.
    35. 35)
      • 22. Kasaeian, A., Mahmoudi, A. R., Astaraei, F. R., et al: ‘3D simulation of solar chimney power plant considering turbine blades’, Energy Convers. Manage., 2017, 147, pp. 5565.
    36. 36)
      • 1. Maghrebi, M.J., Masoudi Nejad, R.: ‘Performance evaluation of floating solar chimney power plant in Iran: estimation of technology progression and cost investigation’, IET Renew. Power Gener., 2017, 11, (13), pp. 16591666.
    37. 37)
      • 12. Pastohr, H., Kornandt, O., Gürlebeck, K.: ‘Numerical and analytical calculations of the temperature and flow field in the upwind power plant’, Int. J. Energy Res., 2004, 28, pp. 495510.
    38. 38)
      • 14. Schlaich, J.: ‘The solar chimney – electricity from the sun’ (Edition Axel Menges, Stuttgart, 1995).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0852
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0852
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address