Estimation of technology progression and cost analysis for a floating solar chimney power plant: a special case – Isfahan city in Iran

Estimation of technology progression and cost analysis for a floating solar chimney power plant: a special case – Isfahan city in Iran

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Regarding the growing need for cheap and unlimited energy sources, renewable energies have been considered. Solar energy is one of the main sources of energy. This article studies the performance of floating solar chimney technology for the manufacturing purpose in Isfahan city. In this purpose, Isfahan city is considered to determine the performance of floating solar chimney power plant (SCPP) to build this type of SCPP. The results have shown that the floating solar chimney power plant can produce 5–200 MW of electrical energy in Isfahan city. Then a study is performed according to return of finance rate, net price value, and finance return period criteria. The results have shown that these power plants are able to be built in large scales of 100 and 200 MW of electricity with an annual capacity of 381 and 712 GW with 44 and 60%, respectively. However, a comparison between the cost analyses of two tested models shows that the 200 MW power plant with a cost of 13,941.52 milliard Rials is more beneficial in Isfahan city.‏


    1. 1)
      • 1. Maghrebi, M.J., Masoudi Nejad, R.: ‘Performance evaluation of floating solar chimney power plant in Iran: estimation of technology progression and cost investigation’, IET Renew. Power Gener., 2017, 11, (13), pp. 16591666.
    2. 2)
      • 2. Günther, H.: ‘In hundred years-future energy supply of the world’ (Franckhsche Verlagshandlung, Stuttgart, 1931).
    3. 3)
      • 3. Haff, W., Friedrich, K., Mayer, G., et al: ‘Solar chimneys part: principle and construction of the pilot plant in manzanararez’, Int. J. Solar Energy, 1983, 2, pp. 320.
    4. 4)
      • 4. Schlaich, J., Bergermann, R., Schiel, W., et al: ‘Design of commercial solar updraft tower systems – utilization of solar induced convective flows for power generation’, Solar Energy Eng., 2005, 127, pp. 117124.
    5. 5)
      • 5. Aurelio, M., Bernardes, S.: ‘Solar chimney power plant development and advancement’, (INTECH, Shanghai, 2010), pp. 173185.
    6. 6)
      • 6. Papageorgiou, C.D..: ‘Floating solar chimney technology: a solar proposal for China’. Proc. ISES Solar World Congress Conf., Heidelberg, 2007, pp. 172176.
    7. 7)
      • 7. Von Backström, T.W., Fluri, T.P.: ‘Maximum fluid power condition in solar chimney power plants – an analytical approach’, Sol. Energy, 2006, 80, (11), pp. 14171423.
    8. 8)
      • 8. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part I: mathematical model development’, Int. J. Energy Res., 1998, 22, pp. 277288.
    9. 9)
      • 9. Pasumarthi, N., Sherif, S.A.: ‘Experimental and theoretical performance of a demonstration solar chimney model – part II: experimental and theoretical results and economic analysis’, Int. J. Energy Res., 1998, 22, pp. 443461.
    10. 10)
      • 10. Padki, M.M., Sherif, S.A.: ‘A mathematical model for solar chimney’. Proc. of 1992 Int. Renewable Energy Conf., University of Jordan, Faculty of Engineering and Technology, Amman, Jordan, 1992, vol. 1, pp. 289294.
    11. 11)
      • 11. Ming, T., Liu, W., Xu, G.: ‘Analytical 301 and numerical investigation of the solar chimney power plant systems’, Int. J. Energy Res., 2006, 30, (11), pp. 861873.
    12. 12)
      • 12. Pastohr, H., Kornandt, O., Gürlebeck, K.: ‘Numerical and analytical calculations of the temperature and flow field in the upwind power plant’, Int. J. Energy Res., 2004, 28, pp. 495510.
    13. 13)
      • 13. Mullet, L.B.: ‘The solar chimney overall efficiency, design and performance’, Int. J. Amb. Energy, 1987, 8, (1), pp. 3540.
    14. 14)
      • 14. Schlaich, J.: ‘The solar chimney – electricity from the sun’ (Edition Axel Menges, Stuttgart, 1995).
    15. 15)
      • 15. Haaf, W., Friedrich, K., Mayr, G., et al: ‘Solar chimneys’, Int. J. Solar Energy, 1983, 2, pp. 320.
    16. 16)
      • 16. Bernardes, M.A., dos, S., Voss, A., et al: ‘Thermal and technical analyses of solar chimney’, Sol. Energy, 2003, 75, (6), pp. 511524.
    17. 17)
      • 17. Gannon, A.J., Von Backström, T.W.: ‘Solar chimney cycle analysis with system loss and solar collector performance’, J. Solar Energy Eng., Trans. ASME, 2000, 122, (3), pp. 133137.
    18. 18)
      • 18. Jafari, A., Poshtiri, A. H.: ‘Passive solar cooling of single-storey buildings by an adsorption chiller system combined with a solar chimney’, J. Clean Prod., 2017, 141, pp. 662682.
    19. 19)
      • 19. Ghalamchi, M., Kasaeian, A., Ghalamchi, M., et al: ‘Optimizing of solar chimney performance using electrohydrodynamic system based on array geometry’, Energy Convers. Manage., 2017, 135, pp. 261269.
    20. 20)
      • 20. Ming, T., Gong, T., de Richter, R. K., et al: ‘Freshwater generation from a solar chimney power plant’, Energy Convers. Manage., 2016, 113, pp. 189200.
    21. 21)
      • 21. Mahal, S. K., Alimin, A. J.: ‘A review of the hybrid solar chimney and water desalination systems for simultaneous production of electricity and fresh water’, Int. Rev. Mech. Eng, 2016, 10, (6), pp. 419436.
    22. 22)
      • 22. Kasaeian, A., Mahmoudi, A. R., Astaraei, F. R., et al: ‘3D simulation of solar chimney power plant considering turbine blades’, Energy Convers. Manage., 2017, 147, pp. 5565.
    23. 23)
      • 23. Zhou, X., Xu, Y.: ‘Solar updraft tower power generation’, Sol. Energy, 2016, 128, pp. 95125.
    24. 24)
      • 24. Mehrpooya, M., Shahsavan, M., Sharifzadeh, M. M. M.: ‘Modeling, energy and exergy analysis of solar chimney power plant – Tehran climate data case study’, Energy, 2016, 115, pp. 257273.
    25. 25)
      • 25. Shirvan, K. M., Mirzakhanlari, S., Mamourian, M., et al: ‘Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: a sensitivity analysis and numerical simulation’, Appl. Energy, 2017, 195, pp. 725737.
    26. 26)
      • 26. Hu, S., Leung, D. Y., Chan, J. C.: ‘Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation’, Appl. Energy, 2017, 204, pp. 948957.
    27. 27)
      • 27. Ming, T., Davies, P., Liu, W., et al: ‘Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis’, Prog. Energy Combust Sci., 2017, 60, pp. 6896.
    28. 28)
      • 28. Gong, T., Ming, T., Huang, X., et al: ‘Numerical analysis on a solar chimney with an inverted U-type cooling tower to mitigate urban air pollution’, Sol. Energy, 2017, 147, pp. 6882.
    29. 29)
      • 29. Papageorgiou, C. D.: ‘Floating solar chimney: the link towards a solar future’. Proc. of the ISES 2005 Solar World Congress Conf., Orlando, FL, 2005, pp. 631643.
    30. 30)
      • 30. Papageorgiou, C. D.: ‘External wind effects on floating solar chimney’. IASTED Proc. of Power and Energy Systems, EuroPES, Conf., Rhodes, 2004, pp. 921963.
    31. 31)
      • 31. Papageorgiou, C. D.: ‘Optimum design for solar power stations with floating solar chimneys’. Proc. of the 32nd National Heat Transfer Conf. Kwangju, Korea, 2004.
    32. 32)
      • 32. Papageorgiou, C.D.: ‘Turbines and generators for floating solar chimney power stations’. Proc. of the IASTED Conf. on European Power and Energy Systems, Benalmadena, 2001, pp. 216.
    33. 33)
      • 33. Zhou, X., Yang, J.: ‘A novel solar thermal power plant with floating chimney stiffened onto a mountainside and potential of the power generation in China's deserts’, Heat Transf. Eng., 2009, 30, (5), pp. 400407.
    34. 34)
      • 34. Dhahri, A., Omri, A.: ‘A review of solar chimney power generation technology’, Int. J. Eng. Adv. Technol., 2013, 2, (3), pp. 117.
    35. 35)
      • 35. Nejad R., Masoudi: ‘A survey on performance of photovoltaic systems in Iran’, Iranica J. Energy Environ., 2015, 6, (2), pp. 7785.
    36. 36)
      • 36. Maghrebi, M. J., Masoudi Nejad, R., Masoudi, S.: ‘Performance analysis of sloped solar chimney power plants in the southwestern region of Iran’, Int. J. Ambient Energy, 2017, 38, (6), pp. 542549.
    37. 37)
      • 37. Papageorgiou, C. D.: ‘Floating solar chimney technology’ (INTECH, Shanghai, 2010).
    38. 38)
      • 38. White, F.: ‘Fluid Mechanics’ (McGraw-Hill, New York, 1999, 4th edn).

Related content

This is a required field
Please enter a valid email address