access icon free Parameter tuning of the PLL to consider the effect on power system small-signal angular stability

A phase locked loop (PLL) tracks the phase of the terminal voltage of a grid-connected permanent magnetic synchronous generator (PMSG) for wind power generation. Phase tracking by the PLL is used by the vector control for the grid connection of the PMSG. This study investigates the impact of phase-tracking performance of the PLL on power system small-signal angular stability. Damping torque analysis conducted in this study explains why the impact of the PLL is normally small. The analysis indicates that under the special condition of open-loop modal resonance, however, the effect of the PLL may become significant. It is very likely that the open-loop modal resonance may reduce the power system small-signal angular stability. Hence, in tuning the parameters of the PLL, the open-loop modal resonance should be avoided. In this study, the procedure about the parameter tuning of the PLL to consider the effect of open-loop modal resonance is proposed and demonstrated in an example multi-machine power system integrated with a PMSG. Analysis and conclusions made in this study are evaluated using the example power system.

Inspec keywords: torque; synchronous generators; permanent magnet generators; wind power plants; power system stability; phase locked loops

Other keywords: power system small-signal angular stability; terminal voltage; damping torque analysis; phase tracking; vector control; grid connection; wind power generation; PMSG; open-loop modal resonance; phase locked loop; multimachine power system; grid-connected permanent magnetic synchronous generator; PLL; parameter tuning

Subjects: Control of electric power systems; Wind power plants; Modulators, demodulators, discriminators and mixers; Synchronous machines; Power system control

References

    1. 1)
      • 5. Timbus, A., Teodorescu, R., Blaabjerg, F., et al: ‘Synchronization methods for three phase distributed power generation systems: an overview and evaluation’. IEEE PESC, June 2005, pp. 24742481.
    2. 2)
      • 4. Morató, J., Knüppel, T., Østergaard, J.: ‘Residue-based evaluation of the use of wind power plants with full converter wind turbines for power oscillation damping control’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 8289.
    3. 3)
      • 1. Quintero, J., Vittal, V., Heydt, G.T., et al: ‘The impact of increased penetration of converter control-based generators on power system modes of oscillation’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 22482256.
    4. 4)
      • 6. Kesler, M., Ozdemir, E.: ‘Synchronous-reference-frame-based controlmethod for UPQC under unbalanced and distorted load conditions’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 39673975.
    5. 5)
      • 8. Hadjidemetriou, L., Kyriakides, E.: ‘A new hybrid PLL for interconnecting renewable energy systems to the grid’, IEEE Trans. Ind. Appl., 2013, 49, (6), pp. 27092719.
    6. 6)
      • 7. Rodríguez, P., Pou, J.: ‘Decoupled double synchronous reference frame PLL for power converters control’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 584592.
    7. 7)
      • 16. Padiyar, K.R.: ‘Power system dynamics stability and control’ (Wiley, New York, 1996).
    8. 8)
      • 11. Li, S., Haskew, T.A.: ‘Optimal and direct-current vector control of direct-driven PMSG wind turbines’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23252337.
    9. 9)
      • 9. Wang, X.F., Song, Y.H., Irving, M.: ‘Modern power systems analysis’ (Springer, Berlin, 2011).
    10. 10)
      • 2. Knuppel1, T., Nielsen, J.N., Jensen, K.H., et al: ‘Small-signal stability of wind power system with full-load converter interfaced wind turbines’, IET Renew. Power Gener., 2012, 6, (2), pp. 7991.
    11. 11)
      • 14. Yu, Y.N.: ‘Power system dynamics’ (Academic Press, 1983).
    12. 12)
      • 3. Eftekharnejad, S., Vittal, V., Heydt, G.T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    13. 13)
      • 12. Shi, L., Crow, M.L.: ‘A phase tracking system for three phase utility interface inverters’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 431438.
    14. 14)
      • 10. Rockwell Autom, Allen-Bradley Co.: ‘Operation of a phase locked loop system under distorted utility conditions’, IEEE Trans. Ind. Appl., 1997, 33, (1), pp. 5863.
    15. 15)
      • 13. Shi, L., Crow, M.L.: ‘A novel PLL system based on adaptive resonant filter’. 40th North American Power Symp. 2008, NAPS ‘08, September 2008, pp. 18.
    16. 16)
      • 15. Wang, H., Du, W.: ‘Analysis and damping control of power system low-frequency oscillations’ (Springer, 2016).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0835
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0835
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading