access icon free Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability

Microgrids have the capability to enhance the resiliency of power systems by supplying local loads during emergency situations. However, the disturbance incident and clearance times cannot be predicted precisely. Therefore, this study is focused on enhancing the resiliency of hybrid microgrids considering feasible islanding and survivability of critical loads. The optimisation problem is decomposed into normal and emergency operation problems. In normal operation, unit commitment status of dispatchable generators and schedules of batteries are revised to ensure a feasible islanding following a disturbance event. In emergency operation, the decision between charging of batteries for future dispatch and feeding of lesser critical loads is considered. In addition, a strategy for minimisation of load curtailment during switching of scheduling windows is also considered. These two considerations can mitigate the curtailment of critical loads during the emergency period. Finally, a resiliency index is formulated to evaluate the performance of the proposed strategy during emergency operation. Numerical simulations have demonstrated the effectiveness of the proposed strategy for enhancing the resiliency of hybrid microgrids.

Inspec keywords: power generation reliability; power generation scheduling; power distribution faults; distributed power generation

Other keywords: optimal operation; hybrid microgrids; resiliency index; scheduling windows; survivability; power system resiliency; islanding

Subjects: Distribution networks; Distributed power generation; Reliability

References

    1. 1)
      • 24. Tushar, M.H.K., Chadi, A., Martin, M., et al: ‘Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 239250.
    2. 2)
      • 28. ‘Battery university-C-rates’. Available at http://batteryuniversity.com/learn/article/what_is_the_c_rate, accessed 12 August 2016.
    3. 3)
      • 29. Texas Instruments: ‘Characteristics of rechargeable batteries’ (Texas Instruments, 2011), pp. 112.
    4. 4)
      • 7. Yuan, W., Jian, H.W., Feng, Q., et al: ‘Robust optimization-based resilient distribution network planning against natural disasters’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 28172826.
    5. 5)
      • 11. Pashajavid, E., Farhad, S., Arindam, G.: ‘Development of a self-healing strategy to enhance the overloading resilience of islanded microgrids’, Accepted forIEEE Trans. Smart Grid, 2016, doi: 10.1109/TSG.2015.2477601.
    6. 6)
      • 14. Wang, Z., Jian, H.W.: ‘Self-healing resilient distribution systems based on sectionalization into microgrids’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 31393149.
    7. 7)
      • 4. Arghandeh, R., Alexandra, V.M., Laura, M., et al: ‘On the definition of cyber-physical resilience in power systems’, Renew.Sustain. Energy Rev., 2016, 58, pp. 10601069.
    8. 8)
      • 5. Wang, Y., Chen, C., Jian, H.W., et al: ‘Research on resilience of power systems under natural disasters—a review’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 16041613.
    9. 9)
      • 8. Schneider, K., Frank, T., Marcelo, E., et al: ‘Evaluating the feasibility to use microgrids as a resiliency resource’, Accepted forIEEE Trans. Smart Grid, 2016, doi: 10.1109/TSG.2015.2494867.
    10. 10)
      • 6. Panteli, M., Pierluigi, M.: ‘Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies’, Electr. Power Syst. Res., 2015, 127, pp. 259270.
    11. 11)
      • 25. U.S. Department of Energy: ‘Onsite distributed generation systems for laboratories’ (Laboratories for the 21st Century, 2011), pp. 122.
    12. 12)
      • 1. Nikmehr, N., Sajad, N.R.: ‘Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm’, IET Renew. Power Gener., 2015, 9, (8), pp. 982990.
    13. 13)
      • 22. Baboli, P.T., Mahdi, S., Mustafa, M.: ‘Energy management and operation modelling of hybrid AC–DC microgrid’, IET Gener. Trans. Distr., 2014, 8, (10), pp. 17001711.
    14. 14)
      • 19. Chen, C.S., Shanxu, D., Tong, C., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
    15. 15)
      • 17. Nikmehr, N., Najafi-Ravadanegh, S.: ‘Optimal power dispatch of multi-microgrids at future smart distribution grids’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 16481657.
    16. 16)
      • 13. Wang, Z., Bokan, C., Jian, H.W., et al: ‘Networked microgrids for self-healing power systems’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 310319.
    17. 17)
      • 20. Mahmoud, M.S., Mohamed, S.R., Mal, S.F.: ‘Review of microgrid architectures–a system of systems perspective’, IET Renew. Power Gener., 2015, 9, (8), pp. 10641078.
    18. 18)
      • 9. Balasubramaniam, K., Parimal, S., Ramtin, H., et al: ‘Energy management system for enhanced resiliency of microgrids during islanded operation’, Electr. Power Syst. Res., 2016, 137, pp. 133141.
    19. 19)
      • 21. Hussain, A., Bui, V.H., Kim, H.M.: ‘A resilient and privacy-preserving energy management strategy for networked microgrids’, Accepted forIEEE Trans. Smart Grid, 2016, doi: 10.1109/TSG.2016.2607422.
    20. 20)
      • 16. Jiang, W., Guan, X.: ‘Coordinated multi-microgrids optimal control algorithm for smart distribution management system’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 21742181.
    21. 21)
      • 27. California energy commission: ‘Behavior of capstone and honeywell microturbine generators during load changes’ (California energy commision, 2004), pp. 138.
    22. 22)
      • 12. Che, L., Mohammad, S.: ‘Dc microgrids: economic operation and enhancement of resilience by hierarchical control’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25172526.
    23. 23)
      • 30. Hosseinzadeh, M., Salmasi, F.R.: ‘Robust optimal power management system for a hybrid AC/DC micro-grid’, IEEE Trans. Sustain.Energy, 2015, 6, (3), pp. 675687.
    24. 24)
      • 26. U.S. Department of Energy: ‘Analysis of fuel cell hybridization and implications for energy storage devices’ (NERL, 2007), pp. 122.
    25. 25)
      • 15. Chen, C., Jian, H.W., Feng, Q., et al: ‘Resilient distribution system by microgrids formation after natural disasters’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 958966.
    26. 26)
      • 3. Simonov, M.: ‘Dynamic partitioning of DC microgrid in resilient clusters using event-driven approach’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 26182625.
    27. 27)
      • 31. Hussain, A., Bui, V.H., Kim, H.M.: ‘Robust optimization-based scheduling of multi-microgrids considering uncertainties’, Energies, 2016, 9, (4), pp. 278298.
    28. 28)
      • 10. Farzin, H., Mahmud, F.F., Moein, M.: ‘Enhancing power system resilience through hierarchical outage management in multi-microgrids’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 28692879.
    29. 29)
      • 2. Khodaei, A.: ‘Resiliency-oriented microgrid optimal scheduling’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 15841591.
    30. 30)
      • 23. Hosseinzadeh, M., Farzad, R.S.: ‘Power management of an isolated hybrid AC/DC micro-grid with fuzzy control of battery banks’, IET Renew. Power Gener., 2015, 9, (5), pp. 484493.
    31. 31)
      • 18. Wang, Z., Chen, B., Wang, J., et al: ‘Coordinated energy management of networked microgrids in distribution systems’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 4553.
    32. 32)
      • 32. Guo, Y., Zhao, C.: ‘Islanding-aware robust energy management for microgrids’, Accepted for publicatonIEEE Trans. Smart Grid, 2016, doi: 10.1109/TSG.2016.2585092.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0820
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0820
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading