access icon free Improving power system stability in the presence of wind farms using STATCOM and predictive control strategy

In this study, a multi-objective predictive control strategy is presented for the stability improvement of a power system in the presence of wind farms and STATCOM. The main contribution of this study is in the multi-objective consideration for controlling the active and reactive powers of the rotor-side converter in each of the induction generators, controlling the voltage of the synchronous generators’ excitation system, and designing the damping controller of STATCOM using the predictive strategy. To reduce the computational burden, and to accurately choose the input paths into the predictive control, the Laguerre functions are used. Also, for reducing the sampling time in the selection of large prediction horizons, the exponential data weighting has been employed. The simulation results were evaluated using MATLAB software in the field of time and frequency under different scenarios. Moreover, the obtained results of each domain are compared using the two techniques of the predictive strategy, i.e. the classic model, Laguerre functions, and also the conventional proportional integral controller. The comparison of these three methods reveals that the functional predictive control outfits the two other controllers in damping of the oscillations.

Inspec keywords: synchronous generators; wind power plants; PI control; static VAr compensators; predictive control; power system stability; asynchronous generators; machine control; reactive power

Other keywords: synchronous generator excitation system; wind farms; multiobjective predictive control strategy; reactive powers; STATCOM; rotor-side converter; conventional proportional integral controller; MATLAB software; functional predictive control; power system stability improvement; exponential data; active powers; damping controller; Laguerre functions; induction generators

Subjects: Asynchronous machines; Control of electric power systems; Optimal control; Synchronous machines; Power system control; Other power apparatus and electric machines; Wind power plants

References

    1. 1)
      • 24. Yang, L., Xu, Z., Ostergaard, J., et al: ‘Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 328339.
    2. 2)
      • 12. Vittal, E., O'Malley, M., Keane, A.: ‘Rotor angle stability with high penetrations of wind generation’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 353362.
    3. 3)
      • 11. Qiao, W., Harley, R.G., Venayagamoorthy, G.K.: ‘Coordinated reactive power control of a large wind farm and a STATCOM using heuristic dynamic programming’, IEEE Trans. Energy Convers., 2009, 24, (2), pp. 493503.
    4. 4)
      • 19. Zheng, Y., Li, S., Li, N.: ‘Distributed model predictive control over network information exchange for large-scale systems’, Control Eng. Pract., 2011, 19, (7), pp. 757769.
    5. 5)
      • 23. Hany, H., Muyeen, M.: ‘Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 200208.
    6. 6)
      • 18. Ford, J.J., Ledwich, G., Dong, Z.Y.: ‘Efficient and robust model predictive control for first swing transient stability of power systems using flexible AC transmission systems devices’, IET Gener. Transm. Distrib., 2008, 2, (5), pp. 731742.
    7. 7)
      • 29. Kavousi-Fard, A., Niknamand, T., Baziar, A.: ‘A novel multi-objective self-adaptive modified firefly algorithm for optimal operation management of stochastic DFR strategy’, Int. Trans. Electr. Energy Syst., 2015, 25, (6), pp. 976993.
    8. 8)
      • 3. Ghanizadeh, R., shendi, A.J., Ebadian, M., et al: ‘A multi-objective HBMO-based new FC-MCR compensator for damping of power system oscillations’, J. Oper. Autom. Power Eng., 2013, 1, (2), pp. 110123.
    9. 9)
      • 5. Hasanien, H.M.: ‘Shuffled frog leaping algorithm-based static synchronous compensator for transient stability improvement of a grid-connected wind farm’, IET Renew. Power Gener., 2014, 8, (6), pp. 722730.
    10. 10)
      • 20. Hadjiski, M., Asenov, V.: ‘Predictive functional control using a blending approach’, Cybern. Inf. Technol., 2005, 5, (2), pp. 3241.
    11. 11)
      • 28. Palomo, G.V., Rossiter, J.A.: ‘Novel programmable logic controller implementation of a predictive controller based on Laguerre functions and multi-parametric solutions’, IET Control Theory Applic., 2012, 6, (8), pp. 10031014.
    12. 12)
      • 16. Han, J., Solanki, S.k., Solanki, J.: ‘Coordinated predictive control of a wind/Battery microgrid system’, IEEE J. Emerging Sel. Top. Power Electron., 2013, 1, (4), pp. 296305.
    13. 13)
      • 10. Fan, L.L., Yin, H.P., Miao, Z.X.: ‘On active/reactive power modulation of DFIG-based wind generation for interarea oscillation damping’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 513521.
    14. 14)
      • 13. Bijami, E., Askari, M., Farsangi, M.: ‘Design of stabilising signals for power system damping using generalized predictive control optimized by a new hybrid shuffled frog leaping algorithm’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 10361045.
    15. 15)
      • 4. Muyeen, S.M., Hasanien, H.M., Durra, A.A.: ‘Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES’, Energy Convers. Manage., 2014, 78, (1), pp. 412420.
    16. 16)
      • 6. Wang, L., Truong, D.N.: ‘Stability enhancement of a power system with a PMSG-based and a DFIG-based offshore wind farm using a SVC with an adaptive-network-based fuzzy inference system’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 27992807.
    17. 17)
      • 22. Padiyar, K.R.: ‘Power system dynamics-Stability and Control’ (BS Publications, Hyderabad, India, 2002).
    18. 18)
      • 25. Shayeghi, H., Shayanfar, H., Jalilzadeh, S., et al: ‘Multi-machine power system stabilizers design using chaotic optimization algorithm’, Energy Convers. Manage., 2010, 51, (7), pp. 15721580.
    19. 19)
      • 27. Evans, A.M., Cannon, M., Kouvaritakis, B.: ‘Robust MPC tower damping for variable speed wind turbines’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 290296.
    20. 20)
      • 9. Hui, L., Shengquan, L., Haiting, J., et al: ‘Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system’, Int. J. Electr. Power Energy Syst., 2014, 61, (10), pp. 279287.
    21. 21)
      • 21. Liu, H., Li, S.: ‘Speed control for PMSM servo system using predictive functional control and extended state observer’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 11711183.
    22. 22)
      • 2. Yan, J., Lin, H., Feng, Y., et al: ‘Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system’, IET Renew. Power Gener., 2013, 7, (1), pp. 2835.
    23. 23)
      • 17. Yang, J., Zheng, W.X.: ‘Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (1), pp. 4953.
    24. 24)
      • 15. Azad, S.P., Iravani, R., Tate, J.E.: ‘Damping inter-area oscillations based on a model predictive control (MPC) HVDC supplementary controller’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 31743183.
    25. 25)
      • 14. Darabian, M., Jalilvand, A., Azari, M.: ‘Power system stability enhancement in the presence of renewable energy resources and HVDC lines based on predictive control strategy’, Int. J. Electr. Power Energy Syst., 2016, 80, (9), pp. 363373.
    26. 26)
      • 8. Wang, L., Truong, D.N.: ‘Stability enhancement of DFIG-based offshore wind farm fed to a multi-machine system using a STATCOM’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 28822889.
    27. 27)
      • 26. Zong, Y., Kullmann, D., Thavlov, A., et al: ‘Application of model predictive control for active load management in a distributed power system with high wind penetration’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 10551062.
    28. 28)
      • 7. Wang, L., Truong, D.N.: ‘Dynamic stability improvement of four parallel-operated PMSG-based offshore wind turbine generators fed to a power system using a STATCOM’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 111119.
    29. 29)
      • 1. Muljadi, E, Singh, M., Gevorgian, V.: ‘Doubly fed induction generator in an offshore wind power plant operated at rated V/Hz’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 21972205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0812
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0812
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading