access icon free Dual-function PV-ECS integrated to 3P4W distribution grid using 3M-PLL control for active power transfer and power quality improvement

This study proposes a single-stage solar photovoltaic energy conversion system (PV-ECS) integrated to a three-phase four-wire (3P4W) distribution grid with dual-function capabilities, i.e. active power transfer and power quality (PQ) enhancement at the point of interaction (PoI). The PV-ECS system comprises of a solar photovoltaic array and a voltage source inverter (VSI), supplying active power (during daytime) to the distribution grid and connected single-phase and three-phase loads. Apart from transfer of power, the system also improves the PQ at the PoI by compensating reactive power and neutral current, attenuating harmonics, correcting power factor and balancing grid currents. During night, the VSI acts as a shunt active power filter mitigating PQ issues, thereby increasing the device utilisation factor. A three-phase magnitude-phase locked loop (3M-PLL) method is utilised to extract and estimate fundamental term of load currents and an incremental conductance algorithm is applied for maximum power point tracking. To demonstrate its effectiveness, the system is modelled and its performance is simulated on MATLAB and experiments are performed on a developed prototype in the laboratory.

Inspec keywords: active filters; maximum power point trackers; power supply quality; power generation control; invertors; power grids; photovoltaic power systems; power factor correction; distributed power generation; solar power stations; solar cell arrays; inductive power transmission; power harmonic filters; voltage-source convertors; phase locked loops; reactive power

Other keywords: device utilisation factor; point of interaction; three-phase magnitude-phase locked loop method; solar photovoltaic array; maximum power point tracking; power quality improvement; active power; reactive power compensation; power factor correction; VSI; 3P4W distribution grid; connected single-phase load; three-phase four-wire distribution grid; 3M-PLL control; PQ enhancement; Matlab; PoI; dual-function PV-ECS system; incremental conductance algorithm; neutral current; active power transfer; three-phase loads; single-stage solar photovoltaic energy conversion system; power quality; harmonics attenuation; grid currents; shunt active power filter; voltage source inverter

Subjects: Other power apparatus and electric machines; Distributed power generation; Control of electric power systems; DC-DC power convertors; Wireless power transmission; Power supply quality and harmonics; DC-AC power convertors (invertors); Solar power stations and photovoltaic power systems

References

    1. 1)
      • 2. Meza, E.: ‘India implements new 40 GW rooftop, small PV plant program’, 20 May 2016. Available at http://www.pv-magazine.com/news/details/beitrag/india-implements-new-40-gw-rooftop--small-pv-plant-program-_100024678/#axzz4ADc3MIV6.
    2. 2)
      • 7. Qasim, M., Kanjiya, P., Khadkikar, V.: ‘Artificial-neural-network-based phase-locking scheme for active power filters’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 38573866.
    3. 3)
      • 20. Elobaid, L.M., Abdelsalam, A.K., Zakzouk, E.E.: ‘Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey’, IET Renew. Power Gener., 2015, 9, (8), pp. 10431063.
    4. 4)
      • 15. Kish, G.J., Lee, J.J., Lehn, P.W.: ‘Modelling and control of photovoltaic panels utilising the incremental conductance method for maximum power point tracking’, IET Renew. Power Gener., 2012, 6, (4), pp. 259266.
    5. 5)
      • 12. Panigrahi, R., Subudhi, B., Panda, P.C.: ‘A robust LQG servo control strategy of shunt-active power filter for power quality enhancement’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 28602869.
    6. 6)
      • 4. Yang, Y., Blaabjerg, F., Wang, H., et al: ‘Power control flexibilities for grid-connected multi-functional photovoltaic inverters’, IET Renew. Power Gener., 2016, 10, (4), pp. 504513.
    7. 7)
      • 27. Akagi, H., Watanabe, E.H., Aredes, M.: ‘Instantaneous power theory and applications to power conditioning’ (Wiley-IEEE Press, Hoboken, NJ, 2007).
    8. 8)
      • 1. Muro, M., Saha, D.: ‘Why rooftop solar – and full retail feed in tariffs – benefits all consumers’, 30 May 2016. Available at http://reneweconomy.com.au/2016/rooftop-solar-net-metering-is-a-net-benefit-28170.
    9. 9)
      • 28. IEEE Recommended Practices and requirement for Harmonic Control on Electric Power System, IEEE Std.519, 1992.
    10. 10)
      • 25. Hsieh, G.-C., Hung, J.C.: ‘Phase locked loop techniques: A survey’, IEEE Trans. Ind. Electron., 1996, 43, (6), pp. 609615.
    11. 11)
      • 18. Mohanty, S., Subudhi, B., Ray, P.K.: ‘A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 181188.
    12. 12)
      • 24. Karimi-Ghartemani, M.: ‘A novel three-phase magnitude-phase-locked loop system’, IEEE Trans. Circuits Syst. I, Regular Papers, 2006, 53, (8), pp. 17921802.
    13. 13)
      • 23. Killi, M., Samanta, S.: ‘An adaptive voltage-sensor-based MPPT for photovoltaic systems with SEPIC converter including steady-state and drift analysis’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 76097619.
    14. 14)
      • 10. Sekhar, V.C., Kant, K., Singh, B.: ‘DSTATCOM supported induction generator for improving power quality’, IET Renew. Power Gener., 2016, 10, (4), pp. 495503.
    15. 15)
      • 16. Sekhar, P.C., Mishra, S.: ‘Takagi–sugeno fuzzy-based incremental conductance algorithm for maximum power point tracking of a photovoltaic generating system’, IET Renew. Power Gener., 2014, 8, (8), pp. 900914.
    16. 16)
      • 22. Khan, O., Xiao, W., Zeineldin, H.H.: ‘Gallium-Nitride-based submodule integrated converters for high-efficiency distributed maximum power point tracking PV applications’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 966975.
    17. 17)
      • 5. Agarwal, R., Hussain, I., Singh, B.: ‘LMF based control algorithm for single stage three-phase grid integrated solar PV system’, IEEE Trans. Sust. Energy, 2016, 7, (4), pp. 13791387.
    18. 18)
      • 14. Paz, F., Ordonez, M.: ‘High performance solar MPPT using switching ripple identification based on a lock-in amplifier’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 35953604.
    19. 19)
      • 13. Espinoza-Trejo, D.R., Bárcenas-Bárcenas, E., Campos-Delgado, D.U., et al: ‘Voltage-oriented input–output linearization controller as maximum power point tracking technique for photovoltaic systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 34993507.
    20. 20)
      • 11. Zou, Z.-X., Zhou, K., Wang, Z., et al: ‘Frequency-adaptive fractional-order repetitive control of shunt active power filters’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 16591668.
    21. 21)
      • 3. Deo, S., Jain, C., Singh, B.: ‘A PLL-less scheme for single-phase grid interfaced load compensating solar PV generation system’, IEEE Trans. Ind. Inf., 2015, 11, (3), pp. 692699.
    22. 22)
      • 8. Srinivas, M., Hussain, I., Singh, B.: ‘Combined LMS-LMF based control algorithm of DSTATCOM for power quality enhancement in distribution system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 41604168.
    23. 23)
      • 21. Chen, S.H., Huang, T.C., Ng, S.S., et al: ‘A direct AC–DC and DC–DC cross-source energy harvesting circuit with analog iterating-based MPPT technique with 72.5% conversion efficiency and 94.6% tracking efficiency’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 58855899.
    24. 24)
      • 17. Soon, T.K., Mekhilef, S.: ‘A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance’, IEEE Trans. Ind. Inf., 2015, 11, (1), pp. 176186.
    25. 25)
      • 19. Mohd Zainuri, M.A.A., Mohd Radzi, M.A., Soh, A.C., et al: ‘Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter’, IET Renew. Power Gener., 2014, 8, (2), pp. 183194.
    26. 26)
      • 26. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    27. 27)
      • 6. Singh, B., Chandra, A., Al-Haddad, K.: ‘Power quality: problems and mitigation techniques’ (John Wiley & Sons Ltd., U.K, 2015).
    28. 28)
      • 9. Singh, M., Chandra, A.: ‘Real-time implementation of ANFIS control for renewable interfacing inverter in 3P4W distribution network’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 121128.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0723
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0723
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading