access icon free Control strategy of switching regulators for fuel-cell power applications

It is often assumed that the input voltage source of a switch-mode power supply is constant or shows negligible small variations. However, the last assumption is no longer valid when a fuel-cell stack is used as input source. A fuel-cell stack is characterised by low and unregulated DC output voltage, in addition, this voltage decreases in a non-linear fashion when the demanded current increases; henceforth, a suitable controller is required to cope the aforementioned issues. In this study, an average current-mode controller is designed using a combined model for a fuel-cell stack and a boost converter; moreover, a selection procedure for the controller gains ensuring system stability and output voltage regulation is developed. The proposed energy system uses a fuel-cell power module (polymer electrolyte membrane fuel cells) and a boost converter delivering a power of 900 W. Experimental results confirm the proposed controller performance for output voltage regulation via closed-loop gain measurements and step load changes. In addition, a comparison between open- and closed-loop measurements is made, where the controller robustness is tested for large load variations and fuel-cell stack output voltage changes as well.

Inspec keywords: power system stability; proton exchange membrane fuel cells; fuel cell power plants; voltage control; closed loop systems; control system synthesis; switching convertors; switched mode power supplies; electric current control

Other keywords: controller gain selection procedure; step load changes; system stability; closed-loop measurements; polymer electrolyte membrane fuel cells; input voltage source; energy system; fuel-cell power module; power 900 W; average current-mode controller design; closed-loop gain measurements; fuel-cell stack; unregulated DC output voltage; switching regulator control strategy; switch-mode power supply; output voltage regulation; boost converter; open-loop measurements

Subjects: Control of electric power systems; Voltage control; Power system control; Power convertors and power supplies to apparatus; Current control; Control system analysis and synthesis methods; Fuel cell power plants

References

    1. 1)
      • 22. Hoogers, G.: ‘Fuel cell technology handbook’ (CRC Press, 2003).
    2. 2)
      • 5. Bahceci, S., Fedakar, S., Yalcinoz, T.: ‘Examination of the grid-connected polymer electrolyte membrane fuel cell's electrical behaviour and control’, IET Renew. Power Gener., 2016, 10, (3), pp. 388398.
    3. 3)
      • 28. Shadmand, M.B., Balog, R.S., Abu-Rub, H.: ‘Model predictive control of PV sources in a smart dc distribution system: maximum power point tracking and droop control’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 913921.
    4. 4)
      • 10. Leel, J.-G., Choe, S.-Y., Ahn, J.-W., et al: ‘Modelling and simulation of a polymer electrolyte membrane fuel cell system with a PWM dc/dc converter for stationary applications’, IET Power Electron., 2008, 1, (3), pp. 305317.
    5. 5)
      • 19. Thounthong, P., Pierfederici, S.: ‘A new control law based on the differential flatness principle for multiphase interleaved DC–DC converter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57, (11), pp. 903907.
    6. 6)
      • 24. Chapra, S.-C., Canale, R.-P.: ‘Numerical methods for engineers’ (McGraw-Hill, 2010).
    7. 7)
      • 9. Kabalo, M., Pairel, D., Blunier, B., et al: ‘Experimental evaluation of four-phase floating interleaved boost converter design and control for fuel cell applications’, IET Power Electron., 2013, 6, (2), pp. 215226.
    8. 8)
      • 13. Shahin, A., Hinaje, M., Martin, J.-P., et al: ‘High voltage ratio dc–dc converter for fuel-cell applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39443955.
    9. 9)
      • 8. Thounthong, P., Davat, B., Rael, S., et al: ‘Fuel cell high-power applications’, IEEE Ind. Electron. Mag., 2009, 3, pp. 3246.
    10. 10)
      • 11. Thounthong, P., Davat, B.: ‘Study of a multi-phase interleaved step-up converter for fuel cell applications’, Energy Convers. Manage., 2010, 51, pp. 826832.
    11. 11)
      • 7. Li, Q., Chen, W., Liu, Z., et al: ‘Active control strategy based on vector proportion integration controller for proton exchange membrane fuel cell grid-connected system’, IET Renew. Power Gener., 2015, 9, (8), pp. 991999.
    12. 12)
      • 16. Leyva-Ramos, J., Lopez-Cruz, J.M., Ortiz-Lopez, M.G., et al: ‘Switching regulator using a high step-up voltage converter for fuel-cell modules’, IET Power Electron., 2013, 6, (8), pp. 16261633.
    13. 13)
      • 20. Sira-Ramírez, H., Oliver-Salazar, M.-A., Leyva-Ramos, J.: ‘Voltage regulation of a fuel cell-boost converter system: a proportional integral exact tracking error dynamics passive output feedback control approach’. American Control Conf. (ACC), Montreal, Canada, June 2012, pp. 21532158.
    14. 14)
      • 15. Vazquez-Oviedo, E.I., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H., et al: ‘Modeling study of a combined fuel-cell stack/switch mode dc–dc converter’, J. Fuel Cell Sci. Technol., 2014, 11, pp. 15.
    15. 15)
      • 18. Thammasiriroj, W., Chunkag, V., Phattanasak, M., et al: ‘Nonlinear single-loop control of the parallel converters for a fuel cell power source used in {DC} grid applications’, Int. J. Electr. Power Energy Syst., 2010, 65, pp. 4148.
    16. 16)
      • 23. Gou, B., Na, W.-K., Diong, B.: ‘Fuel cells, modeling, control and applications’ (CRC Press, 2010).
    17. 17)
      • 12. Naik, M.V., Samuel, P.: ‘Analysis of ripple current, power losses and high efficiency of dc–dc converters for fuel cell power generating systems’, Renew. Sustain. Energy Rev., 2016, 59, pp. 10801088.
    18. 18)
      • 3. Shen, J.-M., Joul, H.-L., Wu, J.-C.: ‘Transformerless three-port grid-connected power converter for distribution power generation system with dual renewable energy sources’, IET Power Electron., 2012, 5, (1), pp. 501509.
    19. 19)
      • 4. Jakhar, H., Soni, M.S., Gakkhar, N.: ‘Historical and recent development of concentrating photovoltaic cooling technologies’, Renew. Sustain. Energy Rev., 2016, 60, pp. 4159.
    20. 20)
      • 2. Benson, Ch.L., Magee, Ch.L.: ‘On improvement rates for renewable energy technologies: solar PV, wind, capacitors, and batteries’, J. Renew. Energy, 2014, 68, pp. 745751.
    21. 21)
      • 14. Hajizade, A., Golkar, M.A., Feliachi, A.: ‘Voltage control and active power management of hybrid fuel-cell/energy-storage power conversion system under unbalanced voltage sag conditions’, IEEE Trans. Energy Convers., 2010, 25, (4), pp. 11951208.
    22. 22)
      • 21. El Fadil, H., Giri, F., Guerrero, J.-M., et al: ‘Modeling and nonlinear control of a fuel cell/supercapacitor hybrid energy storage system for electric vehicles’, IEEE Trans. Veh. Technol., 2014, 63, (7), pp. 30113018.
    23. 23)
      • 1. Carrasco, J.M., Garcia, L., Bialasiewiez, J.T., et al: ‘Power-electronic system for the grid integration of renewable energy sources’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    24. 24)
      • 6. Rahmal, S.A., Varmal, R.K., Vanderheide, T.: ‘Generalised model of a photovoltaic panel’, IET Renew. Power Gener., 2014, 8, (3), pp. 217229.
    25. 25)
      • 27. Tran, V.-L., Tran, N.-T., Yu, S.-H., et al: ‘Design a nonisolated fuel cell boost charger for lithium polymer batteries with a low output ripple’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 605614.
    26. 26)
      • 17. Saadi, R., Kraa, O., Ayad, M.-Y., et al: ‘Dual loop controllers using PI, sliding mode and flatness controls applied to low voltage converters for fuel cell applications’, Int. J. Hydrog. Energy, 2016, 41, (42), pp. 1915419163.
    27. 27)
      • 26. Mohan, N., Undeland, T.-M., Robbins, W.-P.: ‘Power electronics converters, applications, and design’ (John Wiley & Sons, 2003, 3rd edn.).
    28. 28)
      • 25. Guesmi, K., Essounbouli, N., Hamzaoui, A.: ‘Systematic design approach of fuzzy PID stabilizer for dc–dc converters’, Energy Convers. Manage., 2008, 49, pp. 28802889.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2016.0717
Loading

Related content

content/journals/10.1049/iet-rpg.2016.0717
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading